Reference Publications: Transgenic Knock-in Mice, Neural Stem Cells, MEF Cells

Reference Publications

SERVICE

  • CRISPR Cell Line Knock-Out, Knock-in, Point Mutation

    • Peluso, M. O., Adam, A., Armet, C. M., Zhang, L., O’Connor, R. W., Lee, B. H., … & Palombella, V. J. (2020). The Fully human anti-CD47 antibody SRF231 exerts dual-mechanism antitumor activity via engagement of the activating receptor CD32a. Journal for ImmunoTherapy of Cancer8(1), e000413.
    • Tanic, J., Wang, Y., Lee, W., Coelho, N. M., Glogauer, M., & McCulloch, C. A. (2019). Adseverin modulates morphology and invasive function of MCF7 cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease1865(10), 2716-2725.
    • Panda, D., Gjinaj, E., Bachu, M., Squire, E., Novatt, H., Ozato, K., & Rabin, R. L. (2019). IRF1 maintains optimal constitutive expression of antiviral genes and regulates the early antiviral response. Frontiers in immunology10, 1019.
    • Pisapia, P., Malapelle, U., Roma, G., Saddar, S., Zheng, Q., Pepe, F., … & Nikiforov, Y. E. (2019). Consistency and reproducibility of next‐generation sequencing in cytopathology: A second worldwide ring trial study on improved cytological molecular reference specimens. Cancer cytopathology127(5), 285-296.
    • Ilic, D. (2019). Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in October 2018. Regenerative medicine, 14(2), 85-92.
    • Simkin, D., Searl, T. J., Piyevsky, B. N., Forrest, M., Williams, L. A., Joshi, V., … & Penzes, P. (2019). Impaired M-current in KCNQ2 Encephalopathy Evokes Dyshomeostatic Modulation of Excitability. bioRxiv, 538371. https://doi.org/10.1101/538371
    • Jang, Y., Choi, J., Park, N., Kang, J., Kim, M., Kim, Y., & Ju, J. H. (2019). Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Experimental & Molecular Medicine, 51(1), 3.
    • Colomar-Carando, N., Meseguer, A., Jutz, S., Herrera-Fernández, V., Olvera, A., Kiefer, K., … & Vicente, R. (2018). Zip6 Transporter Is an Essential Component of the Lymphocyte Activation Machinery. The Journal of Immunology, ji1800689.
    • Tanic, J. (2018). A Role for Adseverin in the Invasion and Migration of MCF7 Breast Adenocarcinoma Cells (Doctoral dissertation).
    • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., … & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
    • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., … & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
    • Yin, Y., Garcia, M. R., Novak, A. J., Saunders, A. M., Ank, R. S., Nam, A. S., & Fisher, L. W. (2018). Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum. PLoS biology, 16(8), e2005140.
    • Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V. M., … & Schwartz, C. E. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. Journal of Biological Chemistry, jbc-RA118.
    • Smalley, E. (2018). FDA warns public of dangers of DIY gene therapy. https://doi.org/10.1038/nbt0218-119
    • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., … & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of clinical investigation128(3).
    • Boi, S., Ferrell, M. E., Zhao, M., Hasenkrug, K. J., & Evans, L. H. (2018). Mouse APOBEC3 expression in NIH 3T3 cells mediates hypermutation of AKV murine leukemia virus. Virology518, 377-384. https://doi.org/10.1016/j.virol.2018.03.014.
    • Molinski, S. V., et al. (2017). Orkambi® and amplifier co‐therapy improves function from a rare CFTR mutation in gene‐edited cells and patient tissue. EMBO Molecular Medicine, e201607137.
    • Petrovic, P. B. (2017). Myosin Phosphatase Rho-interacting Protein Regulates DDR1-mediated Collagen Tractional Remodeling (Doctoral dissertation, University of Toronto (Canada)).
    • Peng, L., Zhang, H., Hao, Y., Xu, F., Yang, J., Zhang, R., … & Chen, C. (2016). Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. EBioMedicine14, 83-96.
    • Hu, J. K., Crampton, J. C., Locci, M., & Crotty, S. (2016). CRISPR-mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption reveals NKT cell defects but not T follicular helper cell defects. PloS one11(5), e0156074.
    • Smalley, E. (2016). CRISPR mouse model boom, rat model renaissance. Nature Biotechnology. 34, 893–894.
    • Baker, M. (2014). Gene editing at CRISPR speed. Nature biotechnology32(4), 309-313.

    TARGATT™ Site-Specific Knock-in Cell Lines

    Book Chapters

    Master Cell Line

    • Chi, X., Zheng, Q., Jiang, R., Chen-Tsai, R. Y., & Kong, L. J. (2019). A system for site-specific integration of transgenes in mammalian cells. PLOS ONE14(7), e0219842.

    Description of the technology

    • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., … Calos, M. P. (2014). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research42(5), e34. http://doi.org/10.1093/nar/gkt1290.
    • Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., & Luo, L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences of the United States of America108(19), 7902–7907. http://doi.org/10.1073/pnas.1019507108.

    Commentary, comparison with other transgenic methods

    • Rossant, J., Nutter, L. M., & Gertsenstein, M. (2011). Engineering the embryo. Proceedings of the National Academy of Sciences108(19), 7659-7660.

    Tet inducible mice generated by TARGATT™

    Advantage of Hipp11 (H11) locus

    Applications for mice generated by TARGATT™ (and cited/published articles)

    • Carlson, H. L., & Stadler, H. S. (2019). Development and functional characterization of a lncRNA‐HIT conditional loss of function allele. genesis, e23351.
    • Chande, S., Ho, B., Fetene, J., & Bergwitz, C. (2019). Transgenic mouse model for conditional expression of influenza hemagglutinin-tagged human SLC20A1/PIT1. PloS one14(10), e0223052. doi:10.1371/journal.pone.0223052
    • Hu, Q., Ye, Y., Chan, L. C., Li, Y., Liang, K., Lin, A., … & Pan, Y. (2019). Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nature immunology, 1.
    • Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., … & Ahituv, N. (2018). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, eaau0629.
    • Barrett, R. D., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C., Foll, M., … & Hoekstra, H. E. (2018). The fitness consequences of genetic variation in wild populations of mice. bioRxiv, 383240.
    • Ibrahim, L. A., Huang, J. J., Wang, S. Z., Kim, Y. J., Li, I., & Huizhong, W. (2018). Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cerebral Cortex, 1-14.
    • Kumar, A., Dhar, S., Campanelli, G., Butt, N. A., Schallheim, J. M., Gomez, C. R., & Levenson, A. S. (2018). MTA 1 drives malignant progression and bone metastasis in prostate cancer. Molecular oncology.
    • Jang, Y., Wang, C., Broun, A., Park, Y. K., Zhuang, L., Lee, J. E., … & Ge, K. (2018). H3. 3K4M destabilizes enhancer epigenomic writers MLL3/4 and impairs adipose tissue development. bioRxiv, 301986. doi:https://doi.org/10.1101/301986
    • Tang, Y., Kwon, H., Neel, B. A., Kasher-Meron, M., Pessin, J., Yamada, E., & Pessin, J. E. (2018). The fructose-2, 6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. Journal of Biological Chemistry, jbc-RA118.
    • Chen, M., Geoffroy, C. G., Meves, J. M., Narang, A., Li, Y., Nguyen, M. T., … & Elzière, L. (2018). Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports22(13), 3587-3597.
    • Kido, T., Sun, Z., & Lau, Y.-F. C. (2017). Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice. Scientific Reports7, 4113. http://doi.org/10.1038/s41598-017-04117-6.
    • Nouri, N., & Awatramani, R. (2017). A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development144(5), 916-927.
    • Li, K., Wang, F., Cao, W. B., Lv, X. X., Hua, F., Cui, B., … & Yu, J. M. (2017). TRIB3 Promotes APL Progression through Stabilization of the Oncoprotein PML-RARα and Inhibition of p53-Mediated Senescence. Cancer Cell31(5), 697-710.
    • Matharu, N., Rattanasopha, S., Maliskova, L., Wang, Y., Hardin, A., Vaisse, C., & Ahituv, N. (2017). Promoter or Enhancer Activation by CRISPRa Rescues Haploinsufficiency Caused Obesity. bioRxiv, 140426.
    • Jiang, T., Kindt, K., & Wu, D. K. (2017). Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. eLife, 6, e23661.
    • Booze, M. L., Hansen, J. M., & Vitiello, P. F. (2016). A Novel Mouse Model for the Identification of Thioredoxin-1 Protein Interactions. Free Radical Biology & Medicine99, 533–543. http://doi.org/10.1016/j.freeradbiomed.2016.09.013.
    • Feng, D., Dai, S., Liu, F., Ohtake, Y., Zhou, Z., Wang, H., … & Hayat, U. (2016). Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. The Journal of clinical investigation126(6), 2321-2333.
    • Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I. I., … Finkel, T. (2015). Measuring in vivo mitophagy. Molecular Cell60(4), 685–696. http://doi.org/10.1016/j.molcel.2015.10.009.
    • Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K., & Bruneau, B. G. (2014). Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife3, e03848. http://doi.org/10.7554/eLife.03848.
    • Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M., & Smith, M. C. M. (2014). New Applications for Phage Integrases. Journal of Molecular Biology426(15), 2703–2716. http://doi.org/10.1016/j.jmb.2014.05.014.
    • Chen-Tsai, R. Y., Jiang, R., Zhuang, L., Wu, J., Li, L., & Wu, J. (2014). Genome editing and animal models. Chinese science bulletin59(1), 1-6.
    • Park, K.-E., Park, C.-H., Powell, A., Martin, J., Donovan, D. M., & Telugu, B. P. (2016). Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins. International Journal of Molecular Sciences17(6), 810. http://doi.org/10.3390/ijms17060810.
    • Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A., & Kingsley, D. M. (2014). A molecular basis for classic blond hair color in Europeans. Nature Genetics46(7), 748–752. http://doi.org/10.1038/ng.2991.
    • Villamizar, C. A. (2014). Characterization of the vascular pathology in the acta2 r258c mouse model and cerebrovascular characterization of the acta2 null mouse. UT GSBS Dissertations and These (Open Access)Paper 508 (2014)

     

  • TARGATT™ Site Specific Knock-in Mouse 

    Book Chapters

    Master Cell Line

    • Chi, X., Zheng, Q., Jiang, R., Chen-Tsai, R. Y., & Kong, L. J. (2019). A system for site-specific integration of transgenes in mammalian cells. PLOS ONE14(7), e0219842.

    Description of the technology

    • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., … Calos, M. P. (2014). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research42(5), e34. http://doi.org/10.1093/nar/gkt1290.
    • Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., & Luo, L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences of the United States of America108(19), 7902–7907. http://doi.org/10.1073/pnas.1019507108.

    Commentary, comparison with other transgenic methods

    • Rossant, J., Nutter, L. M., & Gertsenstein, M. (2011). Engineering the embryo. Proceedings of the National Academy of Sciences108(19), 7659-7660.

    Tet inducible mice generated by TARGATT™

    Advantage of Hipp11 (H11) locus

    Applications for mice generated by TARGATT™ (and cited/published articles

    • Lindtner, S., Catta-Preta, R., Tian, H., Su-Feher, L., Price, J. D., Dickel, D. E., … & Pennacchio, L. A. (2019). Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. Cell reports, 28(8), 2048-2063.
    • Wang, T. A., Teo, C. F., Åkerblom, M., Chen, C., Tynan-La Fontaine, M., Greiner, V. J., … & Jan, L. Y. (2019). Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron, 103(2), 309-322.
    • Clarke, B. A., Majumder, S., Zhu, H., Lee, Y. T., Kono, M., Li, C., … & Byrnes, C. (2019). The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. eLife8.
    • Carlson, H. L., & Stadler, H. S. (2019). Development and functional characterization of a lncRNA‐HIT conditional loss of function allele. genesis, e23351.
    • Chande, S., Ho, B., Fetene, J., & Bergwitz, C. (2019). Transgenic mouse model for conditional expression of influenza hemagglutinin-tagged human SLC20A1/PIT1. PloS one14(10), e0223052. doi:10.1371/journal.pone.0223052
    • Hu, Q., Ye, Y., Chan, L. C., Li, Y., Liang, K., Lin, A., … & Pan, Y. (2019). Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nature immunology, 1.
    • Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., … & Ahituv, N. (2018). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, eaau0629.
    • Barrett, R. D., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C., Foll, M., … & Hoekstra, H. E. (2018). The fitness consequences of genetic variation in wild populations of mice. bioRxiv, 383240.
    • Ibrahim, L. A., Huang, J. J., Wang, S. Z., Kim, Y. J., Li, I., & Huizhong, W. (2018). Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cerebral Cortex, 1-14.
    • Kumar, A., Dhar, S., Campanelli, G., Butt, N. A., Schallheim, J. M., Gomez, C. R., & Levenson, A. S. (2018). MTA 1 drives malignant progression and bone metastasis in prostate cancer. Molecular oncology.
    • Jang, Y., Wang, C., Broun, A., Park, Y. K., Zhuang, L., Lee, J. E., … & Ge, K. (2018). H3. 3K4M destabilizes enhancer epigenomic writers MLL3/4 and impairs adipose tissue development. bioRxiv, 301986. doi:https://doi.org/10.1101/301986
    • Tang, Y., Kwon, H., Neel, B. A., Kasher-Meron, M., Pessin, J., Yamada, E., & Pessin, J. E. (2018). The fructose-2, 6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. Journal of Biological Chemistry, jbc-RA118.
    • Chen, M., Geoffroy, C. G., Meves, J. M., Narang, A., Li, Y., Nguyen, M. T., … & Elzière, L. (2018). Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports22(13), 3587-3597.
    • Kido, T., Sun, Z., & Lau, Y.-F. C. (2017). Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice. Scientific Reports7, 4113. http://doi.org/10.1038/s41598-017-04117-6.
    • Nouri, N., & Awatramani, R. (2017). A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development144(5), 916-927.
    • Li, K., Wang, F., Cao, W. B., Lv, X. X., Hua, F., Cui, B., … & Yu, J. M. (2017). TRIB3 Promotes APL Progression through Stabilization of the Oncoprotein PML-RARα and Inhibition of p53-Mediated Senescence. Cancer Cell31(5), 697-710.
    • Matharu, N., Rattanasopha, S., Maliskova, L., Wang, Y., Hardin, A., Vaisse, C., & Ahituv, N. (2017). Promoter or Enhancer Activation by CRISPRa Rescues Haploinsufficiency Caused Obesity. bioRxiv, 140426.
    • Jiang, T., Kindt, K., & Wu, D. K. (2017). Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. eLife, 6, e23661.
    • Booze, M. L., Hansen, J. M., & Vitiello, P. F. (2016). A Novel Mouse Model for the Identification of Thioredoxin-1 Protein Interactions. Free Radical Biology & Medicine99, 533–543. http://doi.org/10.1016/j.freeradbiomed.2016.09.013.
    • Feng, D., Dai, S., Liu, F., Ohtake, Y., Zhou, Z., Wang, H., … & Hayat, U. (2016). Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. The Journal of clinical investigation126(6), 2321-2333.
    • Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I. I., … Finkel, T. (2015). Measuring in vivo mitophagy. Molecular Cell60(4), 685–696. http://doi.org/10.1016/j.molcel.2015.10.009.
    • Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K., & Bruneau, B. G. (2014). Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife3, e03848. http://doi.org/10.7554/eLife.03848.
    • Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M., & Smith, M. C. M. (2014). New Applications for Phage Integrases. Journal of Molecular Biology426(15), 2703–2716. http://doi.org/10.1016/j.jmb.2014.05.014.
    • Chen-Tsai, R. Y., Jiang, R., Zhuang, L., Wu, J., Li, L., & Wu, J. (2014). Genome editing and animal models. Chinese science bulletin59(1), 1-6.
    • Park, K.-E., Park, C.-H., Powell, A., Martin, J., Donovan, D. M., & Telugu, B. P. (2016). Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins. International Journal of Molecular Sciences17(6), 810. http://doi.org/10.3390/ijms17060810.
    • Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A., & Kingsley, D. M. (2014). A molecular basis for classic blond hair color in Europeans. Nature Genetics46(7), 748–752. http://doi.org/10.1038/ng.2991.
    • Villamizar, C. A. (2014). Characterization of the vascular pathology in the acta2 r258c mouse model and cerebrovascular characterization of the acta2 null mouse. UT GSBS Dissertations and These (Open Access)Paper 508 (2014)

    CRISPR Knock-in, CRISPR Knockout Mouse

    CRISPR Technology

    CRISPR Knock-in H11 Locus in Pigs

    • Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., … & Chen-Tsai, R. Y. (2015). Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific reports5, 14253.

     Knock-in, Knockout, Conditional Knock-out

    • Park, J., Jung, E., Lee, S. H., & Chung, W. S. (2020). CDC50A dependent phosphatidylserine exposure induces inhibitory post-synapse elimination by microglia. bioRxiv.
    • Ramachandra Rao, S., Fliesler, S. J., Kotla, P., Nguyen, M. N., & Pittler, S. J. (2020). Lack of Overt Retinal Degeneration in a K42E Dhdds Knock-In Mouse Model of RP59. Cells9(4), 896.
    • Beurg, M., Barlow, A., Furness, D. N., & Fettiplace, R. (2019). A Tmc1 mutation reduces calcium permeability and expression of mechanoelectrical transduction channels in cochlear hair cells. Proceedings of the National Academy of Sciences116(41), 20743-20749.
    • Goldring, A. C., Beurg, M., & Fettiplace, R. (2019). The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells. The Journal of physiology.
    • Hwang, S., He, Y., Xiang, X., Seo, W., Kim, S. J., Ma, J., … & Kunos, G. (2019). Interleukin‐22 ameliorates neutrophil‐driven nonalcoholic steatohepatitis through multiple targets. Hepatology https://doi.org/10.1002/hep.31031.
    • Dumesic, P. A., Egan, D. F., Gut, P., Tran, M. T., Parisi, A., Chatterjee, N., … & Dou, F. (2019). An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell metabolism.
    • Liang, T., Zhang, H., Xu, Q., Wang, S., Qin, C., & Lu, Y. (2019). Mutant Dentin Sialophosphoprotein Causes Dentinogenesis Imperfecta. Journal of dental research, 0022034519854029.
    • Qian, W., Miner, C. A., Ingle, H., Platt, D. J., Baldridge, M. T., & Miner, J. J. (2019). A human STAT1 gain-of-function mutation impairs CD8+ T cell responses against gammaherpesvirus-68. Journal of virology, JVI-00307.
    • Kweon, S. M., Chen, Y., Moon, E., Kvederaviciutė, K., Klimasauskas, S., & Feldman, D. E. (2019). An Adversarial DNA N6-Methyladenine-Sensor Network Preserves Polycomb Silencing. Molecular Cell. https://doi.org/10.1016/j.molcel.2019.03.018
    • Deng, F., He, S., Cui, S., Shi, Y., Tan, Y., Li, Z., … & Peng, L. (2019). A molecular targeted immunotherapeutic strategy for ulcerative colitis via dual-targeting nanoparticles delivering miR-146b to intestinal macrophages. Journal of Crohn’s and Colitis13(4), 482-494.
    • Jo, Sungro, Tatiana L. Fonseca, Barbara MLC Bocco, Gustavo W. Fernandes, Elizabeth A. McAninch, Anaysa P. Bolin, Rodrigo R. Da Conceição et al. “Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain.” The Journal of clinical investigation 129, no. 1 (2019): 230-245.
    • Langston, R. G., Rudenko, I. N., Kumaran, R., Hauser, D. N., Kaganovich, A., Ponce, L. B., … & Beilina, A. (2018). Differences in Stability, Activity and Mutation Effects Between Human and Mouse Leucine-Rich Repeat Kinase 2. Neurochemical research, 1-14.
    • Amara, N., Tholen, M., & Bogyo, M. (2018). Chemical tools for selective activity profiling of endogenously expressed MMP-14 in multicellular models. ACS Chemical Biology. doi: 10.1021/acschembio.8b00562.
    • Allocca, S., Ciano, M., Ciardulli, M. C., D’Ambrosio, C., Scaloni, A., Sarnataro, D., … & Bonatti, S. (2018). An αB-Crystallin Peptide Rescues Compartmentalization and Trafficking Response to Cu Overload of ATP7B-H1069Q, the Most Frequent Cause of Wilson Disease in the Caucasian Population. International journal of molecular sciences19(7).
    • Peng, L., Zhang, H., Hao, Y., Xu, F., Yang, J., Zhang, R., … & Chen, C. (2016). Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. EBioMedicine14, 83-96.
    • Hu, J. K., Crampton, J. C., Locci, M., & Crotty, S. (2016). CRISPR-mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption reveals NKT cell defects but not T follicular helper cell defects. PloS one11(5), e0156074.
    • Besschetnova, T. Y., Ichimura, T., Katebi, N., Croix, B. S., Bonventre, J. V., & Olsen, B. R. (2015). Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biology42, 56-73.
    • McKenzie, C. W., Craige, B., Kroeger, T. V., Finn, R., Wyatt, T. A., Sisson, J. H., … & Lee, L. (2015). CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Molecular biology of the cell26(18), 3140-3149.
    • Bishop, K. A., Harrington, A., Kouranova, E., Weinstein, E. J., Rosen, C. J., Cui, X., & Liaw, L. (2016). CRISPR/Cas9-mediated insertion of loxP sites in the mouse Dock7 gene provides an effective alternative to use of targeted embryonic stem cells. G3: Genes, Genomes, Genetics6(7), 2051-2061.

    Homologous Recombination Conditional Knockout Mouse

    • Zhao, M., Tao, F., Venkatraman, A., Li, Z., Smith, S. E., Unruh, J., … & Marshall, H. (2019). N-Cadherin-Expressing Bone and Marrow Stromal Progenitor Cells Maintain Reserve Hematopoietic Stem Cells. Cell reports, 26(3), 652-669.
    • Li, C., Zheng, Z., Ha, P., Chen, X., Jiang, W., Sun, S., … & Chen, E. C. (2018). Neurexin Superfamily Cell Membrane Receptor Contactin‐Associated Protein Like‐4 (Cntnap4) is Involved in Neural EGFL Like 1 (Nell‐1)‐responsive Osteogenesis. Journal of Bone and Mineral Research https://doi.org/10.1002/jbmr.3524.
    • Geraets, R. D., Langin, L. M., Cain, J. T., Parker, C. M., Beraldi, R., Kovacs, A. D., … & Pearce, D. A. (2017). A tailored mouse model of CLN2 disease: A nonsense mutant for testing personalized therapies. PloS one12(5), e0176526.
    • Miller, J. N., Kovács, A. D., & Pearce, D. A. (2015). The novel Cln1R151Xmouse model of infantile neuronal ceroid lipofuscinosis (INCL) for testing nonsense suppression therapyHuman Molecular Genetics24(1), 185–196. http://doi.org/10.1093/hmg/ddu428.
  • TARGATT™ Site-Specific Knock-in Rat H11

    Book Chapters

    Master Cell Line

    • Chi, X., Zheng, Q., Jiang, R., Chen-Tsai, R. Y., & Kong, L. J. (2019). A system for site-specific integration of transgenes in mammalian cells. PLOS ONE14(7), e0219842.

    Description of the technology

    • POSTER. 13th Transgenic Technology Meeting being held in Prague, Czech Republic. March 20-23, 2016
    • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., … Calos, M. P. (2014). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research42(5), e34. http://doi.org/10.1093/nar/gkt1290.
    • Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., & Luo, L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences of the United States of America108(19), 7902–7907. http://doi.org/10.1073/pnas.1019507108.

    Commentary, comparison with other transgenic methods

    • Rossant, J., Nutter, L. M., & Gertsenstein, M. (2011). Engineering the embryo. Proceedings of the National Academy of Sciences108(19), 7659-7660.

    Tet inducible mice generated by TARGATT™

    Advantage of Hipp11 (H11) locus

    Applications for mice generated by TARGATT™ (and cited/published articles)

    • Lindtner, S., Catta-Preta, R., Tian, H., Su-Feher, L., Price, J. D., Dickel, D. E., … & Pennacchio, L. A. (2019). Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. Cell reports, 28(8), 2048-2063.
    • Wang, T. A., Teo, C. F., Åkerblom, M., Chen, C., Tynan-La Fontaine, M., Greiner, V. J., … & Jan, L. Y. (2019). Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron, 103(2), 309-322.
    • Clarke, B. A., Majumder, S., Zhu, H., Lee, Y. T., Kono, M., Li, C., … & Byrnes, C. (2019). The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. eLife8.
    • Carlson, H. L., & Stadler, H. S. (2019). Development and functional characterization of a lncRNA‐HIT conditional loss of function allele. genesis, e23351.
    • Chande, S., Ho, B., Fetene, J., & Bergwitz, C. (2019). Transgenic mouse model for conditional expression of influenza hemagglutinin-tagged human SLC20A1/PIT1. PloS one14(10), e0223052. doi:10.1371/journal.pone.0223052
    • Hu, Q., Ye, Y., Chan, L. C., Li, Y., Liang, K., Lin, A., … & Pan, Y. (2019). Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nature immunology, 1.
    • Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., … & Ahituv, N. (2018). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, eaau0629.
    • Barrett, R. D., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C., Foll, M., … & Hoekstra, H. E. (2018). The fitness consequences of genetic variation in wild populations of mice. bioRxiv, 383240.
    • Ibrahim, L. A., Huang, J. J., Wang, S. Z., Kim, Y. J., Li, I., & Huizhong, W. (2018). Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cerebral Cortex, 1-14.
    • Kumar, A., Dhar, S., Campanelli, G., Butt, N. A., Schallheim, J. M., Gomez, C. R., & Levenson, A. S. (2018). MTA 1 drives malignant progression and bone metastasis in prostate cancer. Molecular oncology.
    • Jang, Y., Wang, C., Broun, A., Park, Y. K., Zhuang, L., Lee, J. E., … & Ge, K. (2018). H3. 3K4M destabilizes enhancer epigenomic writers MLL3/4 and impairs adipose tissue development. bioRxiv, 301986. doi:https://doi.org/10.1101/301986
    • Tang, Y., Kwon, H., Neel, B. A., Kasher-Meron, M., Pessin, J., Yamada, E., & Pessin, J. E. (2018). The fructose-2, 6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. Journal of Biological Chemistry, jbc-RA118.
    • Chen, M., Geoffroy, C. G., Meves, J. M., Narang, A., Li, Y., Nguyen, M. T., … & Elzière, L. (2018). Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports22(13), 3587-3597.
    • Kido, T., Sun, Z., & Lau, Y.-F. C. (2017). Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice. Scientific Reports7, 4113. http://doi.org/10.1038/s41598-017-04117-6.
    • Nouri, N., & Awatramani, R. (2017). A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development144(5), 916-927.
    • Li, K., Wang, F., Cao, W. B., Lv, X. X., Hua, F., Cui, B., … & Yu, J. M. (2017). TRIB3 Promotes APL Progression through Stabilization of the Oncoprotein PML-RARα and Inhibition of p53-Mediated Senescence. Cancer Cell31(5), 697-710.
    • Matharu, N., Rattanasopha, S., Maliskova, L., Wang, Y., Hardin, A., Vaisse, C., & Ahituv, N. (2017). Promoter or Enhancer Activation by CRISPRa Rescues Haploinsufficiency Caused Obesity. bioRxiv, 140426.
    • Jiang, T., Kindt, K., & Wu, D. K. (2017). Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. eLife, 6, e23661.
    • Booze, M. L., Hansen, J. M., & Vitiello, P. F. (2016). A Novel Mouse Model for the Identification of Thioredoxin-1 Protein Interactions. Free Radical Biology & Medicine99, 533–543. http://doi.org/10.1016/j.freeradbiomed.2016.09.013.
    • Feng, D., Dai, S., Liu, F., Ohtake, Y., Zhou, Z., Wang, H., … & Hayat, U. (2016). Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. The Journal of clinical investigation126(6), 2321-2333.
    • Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I. I., … Finkel, T. (2015). Measuring in vivo mitophagy. Molecular Cell60(4), 685–696. http://doi.org/10.1016/j.molcel.2015.10.009.
    • Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K., & Bruneau, B. G. (2014). Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife3, e03848. http://doi.org/10.7554/eLife.03848.
    • Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M., & Smith, M. C. M. (2014). New Applications for Phage Integrases. Journal of Molecular Biology426(15), 2703–2716. http://doi.org/10.1016/j.jmb.2014.05.014.
    • Chen-Tsai, R. Y., Jiang, R., Zhuang, L., Wu, J., Li, L., & Wu, J. (2014). Genome editing and animal models. Chinese science bulletin59(1), 1-6.
    • Park, K.-E., Park, C.-H., Powell, A., Martin, J., Donovan, D. M., & Telugu, B. P. (2016). Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins. International Journal of Molecular Sciences17(6), 810. http://doi.org/10.3390/ijms17060810.
    • Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A., & Kingsley, D. M. (2014). A molecular basis for classic blond hair color in Europeans. Nature Genetics46(7), 748–752. http://doi.org/10.1038/ng.2991.
    • Villamizar, C. A. (2014). Characterization of the vascular pathology in the acta2 r258c mouse model and cerebrovascular characterization of the acta2 null mouse. UT GSBS Dissertations and These (Open Access)Paper 508 (2014)

    CRISPR Knock-In, Knock-Out, Conditional Knock-Out Rat

    CRISPR Technology

    CRISPR Knock-in H11 Locus in Pigs

    • Ruan, J., Li, H., Xu, K., Wu, T., Wei, J., Zhou, R., … & Chen-Tsai, R. Y. (2015). Highly efficient CRISPR/Cas9-mediated transgene knockin at the H11 locus in pigs. Scientific reports5, 14253.

    Others

    • Park, J., Jung, E., Lee, S. H., & Chung, W. S. (2020). CDC50A dependent phosphatidylserine exposure induces inhibitory post-synapse elimination by microglia. bioRxiv.
    • Ramachandra Rao, S., Fliesler, S. J., Kotla, P., Nguyen, M. N., & Pittler, S. J. (2020). Lack of Overt Retinal Degeneration in a K42E Dhdds Knock-In Mouse Model of RP59. Cells9(4), 896.
    • Beurg, M., Barlow, A., Furness, D. N., & Fettiplace, R. (2019). A Tmc1 mutation reduces calcium permeability and expression of mechanoelectrical transduction channels in cochlear hair cells. Proceedings of the National Academy of Sciences116(41), 20743-20749.
    • Goldring, A. C., Beurg, M., & Fettiplace, R. (2019). The contribution of TMC1 to adaptation of mechanoelectrical transduction channels in cochlear outer hair cells. The Journal of physiology.
    • Hwang, S., He, Y., Xiang, X., Seo, W., Kim, S. J., Ma, J., … & Kunos, G. (2019). Interleukin‐22 ameliorates neutrophil‐driven nonalcoholic steatohepatitis through multiple targets. Hepatology https://doi.org/10.1002/hep.31031.
    • Dumesic, P. A., Egan, D. F., Gut, P., Tran, M. T., Parisi, A., Chatterjee, N., … & Dou, F. (2019). An Evolutionarily Conserved uORF Regulates PGC1α and Oxidative Metabolism in Mice, Flies, and Bluefin Tuna. Cell metabolism.
    • Liang, T., Zhang, H., Xu, Q., Wang, S., Qin, C., & Lu, Y. (2019). Mutant Dentin Sialophosphoprotein Causes Dentinogenesis Imperfecta. Journal of dental research, 0022034519854029.
    • Qian, W., Miner, C. A., Ingle, H., Platt, D. J., Baldridge, M. T., & Miner, J. J. (2019). A human STAT1 gain-of-function mutation impairs CD8+ T cell responses against gammaherpesvirus-68. Journal of virology, JVI-00307.
    • Kweon, S. M., Chen, Y., Moon, E., Kvederaviciutė, K., Klimasauskas, S., & Feldman, D. E. (2019). An Adversarial DNA N6-Methyladenine-Sensor Network Preserves Polycomb Silencing. Molecular Cell. https://doi.org/10.1016/j.molcel.2019.03.018
    • Deng, F., He, S., Cui, S., Shi, Y., Tan, Y., Li, Z., … & Peng, L. (2019). A molecular targeted immunotherapeutic strategy for ulcerative colitis via dual-targeting nanoparticles delivering miR-146b to intestinal macrophages. Journal of Crohn’s and Colitis13(4), 482-494.
    • Jo, Sungro, Tatiana L. Fonseca, Barbara MLC Bocco, Gustavo W. Fernandes, Elizabeth A. McAninch, Anaysa P. Bolin, Rodrigo R. Da Conceição et al. “Type 2 deiodinase polymorphism causes ER stress and hypothyroidism in the brain.” The Journal of clinical investigation 129, no. 1 (2019): 230-245.
    • Langston, R. G., Rudenko, I. N., Kumaran, R., Hauser, D. N., Kaganovich, A., Ponce, L. B., … & Beilina, A. (2018). Differences in Stability, Activity and Mutation Effects Between Human and Mouse Leucine-Rich Repeat Kinase 2. Neurochemical research, 1-14.
    • Amara, N., Tholen, M., & Bogyo, M. (2018). Chemical tools for selective activity profiling of endogenously expressed MMP-14 in multicellular models. ACS Chemical Biology. doi: 10.1021/acschembio.8b00562.
    • Allocca, S., Ciano, M., Ciardulli, M. C., D’Ambrosio, C., Scaloni, A., Sarnataro, D., … & Bonatti, S. (2018). An αB-Crystallin Peptide Rescues Compartmentalization and Trafficking Response to Cu Overload of ATP7B-H1069Q, the Most Frequent Cause of Wilson Disease in the Caucasian Population. International journal of molecular sciences, 19(7).
    • Peng, L., Zhang, H., Hao, Y., Xu, F., Yang, J., Zhang, R., … & Chen, C. (2016). Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. EBioMedicine, 14, 83-96.
    • Hu, J. K., Crampton, J. C., Locci, M., & Crotty, S. (2016). CRISPR-mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption reveals NKT cell defects but not T follicular helper cell defects. PloS one, 11(5), e0156074.
    • Besschetnova, T. Y., Ichimura, T., Katebi, N., Croix, B. S., Bonventre, J. V., & Olsen, B. R. (2015). Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biology, 42, 56-73.
    • McKenzie, C. W., Craige, B., Kroeger, T. V., Finn, R., Wyatt, T. A., Sisson, J. H., … & Lee, L. (2015). CFAP54 is required for proper ciliary motility and assembly of the central pair apparatus in mice. Molecular biology of the cell, 26(18), 3140-3149.
    • Bishop, K. A., Harrington, A., Kouranova, E., Weinstein, E. J., Rosen, C. J., Cui, X., & Liaw, L. (2016). CRISPR/Cas9-mediated insertion of loxP sites in the mouse Dock7 gene provides an effective alternative to use of targeted embryonic stem cells. G3: Genes, Genomes, Genetics, 6(7), 2051-2061.
  • iPSC Generation

    • Ilic, D. (2019). Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in October 2018. Regenerative medicine14(2), 85-92.
    • Allende, M. L., Cook, E. K., Larman, B. C., Nugent, A., Brady, J. M., Golebiowski, D., … & Proia, R. L. (2018). Cerebral organoids derived from Sandhoff disease induced pluripotent stem cells exhibit impaired neurodifferentiation. Journal of Lipid Research, jlr-M081323.
    • Field, A. R., Jacobs, F. M., Fiddes, I. T., Phillips, A. P., Reyes-Ortiz, A. M., LaMontagne, E., … & Hauessler, M. (2019). Structurally Conserved Primate LncRNAs Are Transiently Expressed during Human Cortical Differentiation and Influence Cell-Type-Specific Genes. Stem cell reports.

    Safe Harbor Locus Master iPSC Generation with TARGATT™

    • Karow, M., Chavez, C. L., Farruggio, A. P., Geisinger, J. M., Keravala, A., Jung, W. E., … & Calos, M. P. (2011). Site‐Specific Recombinase Strategy to Create Induced Pluripotent Stem Cells Efficiently with Plasmid DNA. Stem Cells29(11), 1696-1704.
    • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., … & Calos, M. P. (2013). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic acids research42(5), e34-e34.

    iPSC Disease Modeling

    • Ilic, D. (2019). Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in October 2018. Regenerative medicine, 14(2), 85-92.
    • Simkin, D., Searl, T. J., Piyevsky, B. N., Forrest, M., Williams, L. A., Joshi, V., … & Penzes, P. (2019). Impaired M-current in KCNQ2 Encephalopathy Evokes Dyshomeostatic Modulation of Excitability. bioRxiv, 538371. https://doi.org/10.1101/538371
    • Jang, Y., Choi, J., Park, N., Kang, J., Kim, M., Kim, Y., & Ju, J. H. (2019). Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Experimental & Molecular Medicine, 51(1), 3.
    • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., … & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
    • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., … & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
    • Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V. M., … & Schwartz, C. E. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. Journal of Biological Chemistry, jbc-RA118.
    • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., … & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of clinical investigation128(3).
    • Seigel, G. M., et al. (2014). Comparative Analysis of ABCG2+ Stem-Like Retinoblastoma Cells and Induced Pluripotent Stem Cells as Three-Dimensional Aggregates. Investigative Ophthalmology & Visual Science55(13), 3068-3068.
    • Comley, J. (2016). CRISPR/Cas9 – transforming gene editing in drug discovery labs. Drug Discovery Weekly. Fall 2016; 33-48.

    Teratoma Analysis, iPSC Characterization

    Teratoma Formation Assay (Published reports of ASC’s Teratoma Formation Analysis Reports can be found in the Certificate of Analysis “Induced Pluripotent Stem Cells (iPSCs)” by Coriell Institute for Medical Research.)

    References (*cited/published articles)

    • Ou, J., Ball, J. M., Luan, Y., Zhao, T., Miyagishima, K. J., Xu, Y., … & Mallon, B. S. (2018). iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell173(4), 851-863. https://doi.org/10.1016/j.cell.2018.03.010
    • Teves, S. S., An, L., Bhargava-Shah, A., Xie, L., Darzacq, X., & Tjian, R. (2018). A stable mode of bookmarking by TBP recruits RNA Polymerase II to mitotic chromosomes. bioRxiv, 257451. DOI: 10.1101/257451
    • Hansen, A. S., Pustova, I., Cattoglio, C., Tjian, R., & Darzacq, X. (2017). CTCF and cohesin regulate chromatin loop stability with distinct dynamics. Elife, 6.
    • Vermilyea, S. C., Guthrie, S., Meyer, M., Smuga-Otto, K., Braun, K., Howden, S., … & Golos, T. G. (2017). Induced Pluripotent Stem Cell-Derived Dopaminergic Neurons from Adult Common Marmoset Fibroblasts. Stem cells and development, 26(17), 1225-1235. https://doi.org/10.1089/scd.2017.0069.
    • Teves, S. S., An, L., Hansen, A. S., Xie, L., Darzacq, X., & Tjian, R. (2016). A dynamic mode of mitotic bookmarking by transcription factors. Elife, 5.
    • Laskowski, T. J., Van Caeneghem, Y., Pourebrahim, R., Ma, C., Ni, Z., Garate, Z., … & Segovia, J. C. (2016). Gene correction of iPSCs from a Wiskott-Aldrich syndrome patient normalizes the lymphoid developmental and functional defects. Stem cell reports7(2), 139-148.
    • Boza-Morán, M. G., Martínez-Hernández, R., Bernal, S., Wanisch, K., Also-Rallo, E., Le Heron, A., … & Tizzano, E. F. (2015). Decay in survival motor neuron and plastin 3 levels during differentiation of iPSC-derived human motor neurons. Scientific reports, 5, 11696.
    • Romero, I. G., Pavlovic, B. J., Hernando-Herraez, I., Zhou, X., Ward, M. C., Banovich, N. E., … & Chavarria, C. I. (2015). A panel of induced pluripotent stem cells from chimpanzees: a resource for comparative functional genomics. Elife, 4.
    • Cheung, H. S., Pelaez, D., & Huang, C. C. (2015). U.S. Patent Application No. 14/382,287.
    • Chakravarti, D., Su, X., Cho, M. S., Bui, N. H. B., Coarfa, C., Venkatanarayan, A., … & Leung, M. L. (2014). Induced multipotency in adult keratinocytes through down-regulation of ΔNp63 or DGCR8. Proceedings of the National Academy of Sciences, 111(5), E572-E581.
    • Lee, J., Kim, Y., Yi, H., Diecke, S., Kim, J., Jung, H., … & Park, S. H. (2014). Generation of disease-specific induced pluripotent stem cells from patients with rheumatoid arthritis and osteoarthritis. Arthritis research & therapy, 16(1), R41.
    • Quang, T., Marquez, M., Blanco, G., & Zhao, Y. (2014). Dosage and cell line dependent inhibitory effect of bFGF supplement in human pluripotent stem cell culture on inactivated human mesenchymal stem cells. PloS one, 9(1), e86031.
    • Jumabay, M., Abdmaulen, R., Ly, A., Cubberly, M. R., Shahmirian, L. J., Heydarkhan-Hagvall, S., … & Boström, K. I. (2014). Pluripotent stem cells derived from mouse and human white mature adipocytes. Stem cells translational medicine, 3(2), 161-171.
    • Sanders, L. H., Laganière, J., Cooper, O., Mak, S. K., Vu, B. J., Huang, Y. A., … & Langston, J. W. (2014). LRRK2 mutations cause mitochondrial DNA damage in iPSC-derived neural cells from Parkinson’s disease patients: reversal by gene correction. Neurobiology of disease, 62, 381-386.
    • Sun, N., & Zhao, H. (2014). Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnology and bioengineering, 111(5), 1048-1053.
    • Lee, P., Martin, N. T., Nakamura, K., Azghadi, S., Amiri, M., Ben-David, U., … & Lowry, W. E. (2013). SMRT compounds abrogate cellular phenotypes of ataxia telangiectasia in neural derivatives of patient-specific hiPSCs. Nature communications, 4, 1824.
    • Buccini, S. M. (2013). Doctoral dissertation, University of Cincinnati.
    • Pelaez, D., Huang, C. Y. C., & Cheung, H. S. (2013). Isolation of pluripotent neural crest-derived stem cells from adult human tissues by connexin-43 enrichment. Stem cells and development, 22(21), 2906-2914.
    • Cassidy, L., Choi, M., Meyer, J., Chang, R., & Seigel, G. M. (2013). Immunoreactivity of Pluripotent Markers SSEA-5 and L1CAM in Human Tumors, Teratomas, and Induced Pluripotent Stem Cells. Journal of Biomarkers, 2013, 960862. http://doi.org/10.1155/2013/960862.
    • Cooper, O., Seo, H., Andrabi, S., Guardia-Laguarta, C., Graziotto, J., Sundberg, M., … Isacson, O. (2012). Familial Parkinson’s disease iPSCs show cellular deficits in mitochondrial responses that can be pharmacologically rescued. Science Translational Medicine, 4(141), 141ra90. http://doi.org/10.1126/scitranslmed.3003985.
    • Zheng, Z., Jian, J., Zhang, X., Zara, J. N., Yin, W., Chiang, M., … & Soo, C. (2012). Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials, 33(24), 5821-5831.
    • Almeida, S., Zhang, Z., Coppola, G., Mao, W., Futai, K., Karydas, A., … & Sena-Esteves, M. (2012). Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell reports, 2(4), 789-798.
    • Zhang, W. Y., de Almeida, P. E., & Wu, J. C. (2012). Teratoma formation: A tool for monitoring pluripotency in stem cell research. StemBook.
    • Jing, L., Christoforou, N., Leong, K. W., Setton, L. A., & Chen, J. (2012). Differentiation potential of human induced pluripotent stem cells (iPSCs) to nucleus pulposus-like cells in vitro. Global Spine Journal, 2(1_suppl), s-0032.
    • Valamehr, B., Abujarour, R., Robinson, M., Le, T., Robbins, D., Shoemaker, D., & Flynn, P. (2012). A novel platform to enable the high-throughput derivation and characterization of feeder-free human iPSCs. Scientific reports, 2, 213.
    • Chen, K. G., Mallon, B. S., Hamilton, R. S., Kozhich, O. A., Park, K., Hoeppner, D. J., … & McKay, R. D. (2012). Non-colony type monolayer culture of human embryonic stem cells. Stem cell research, 9(3), 237-248.
    • Telugu, B. P. V. L., Ezashi, T., Sinha, S., Alexenko, A. P., Spate, L., Prather, R. S., & Roberts, R. M. (2011). Leukemia Inhibitory Factor (LIF)-dependent, Pluripotent Stem Cells Established from Inner Cell Mass of Porcine Embryos. The Journal of Biological Chemistry, 286(33), 28948–28953. http://doi.org/10.1074/jbc.M111.229468.
    • Deleidi, M., Hargus, G., Hallett, P., Osborn, T., & Isacson, O. (2011). Development of histocompatible primate induced pluripotent stem cells for neural transplantation. Stem Cells (Dayton, Ohio), 29(7), 1052–1063. http://doi.org/10.1002/stem.662

    Karyotyping (*cited/published articles)

    • Zhao, L., Teklemariam, T., & Hantash, B. M. (2014). Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem cell research, 13(2), 342-354.
    • Sun, N., & Zhao, H. (2014). Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnology and bioengineering, 111(5), 1048-1053.
    • An, M. C., Zhang, N., Scott, G., Montoro, D., Wittkop, T., Mooney, S., … & Ellerby, L. M. (2012). Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell stem cell, 11(2), 253-263.
    • Zheng, Z., Jian, J., Zhang, X., Zara, J. N., Yin, W., Chiang, M., … & Soo, C. (2012). Reprogramming of human fibroblasts into multipotent cells with a single ECM proteoglycan, fibromodulin. Biomaterials, 33(24), 5821-5831.
  • Vector Design/ Cloning Service (*cited/published articles)

    • Hu, Q., Li, C., Wang, S., Li, Y., Wen, B., Zhang, Y., … & Nguyen, T. K. (2019). LncRNAs-directed PTEN enzymatic switch governs epithelial–mesenchymal transition. Cell research, 1.
    • Besschetnova, T. Y., Ichimura, T., Katebi, N., Croix, B. S., Bonventre, J. V., & Olsen, B. R. (2015). Regulatory mechanisms of anthrax toxin receptor 1-dependent vascular and connective tissue homeostasis. Matrix Biology42, 56-73.

    Lentivirus Packaging

    • Mace, E. M., Paust, S., Conte, M. I., Baxley, R. M., Schmit, M., Mukherjee, M., … & Akdemir, Z. C. (2019). Human NK cell deficiency as a result of biallelic mutations in MCM10. bioRxiv, 825554.
    • Chen, H., Shi, M., Gilam, A., Zheng, Q., Zhang, Y., Afrikanova, I., … & Chen-Tsai, R. Y. (2019). Hemophilia A ameliorated in mice by CRISPR-based in vivo genome editing of human Factor VIII. Scientific reports9(1), 1-15.
    • Baskfield, A., Li, R., Beers, J., Zou, J., Liu, C., & Zheng, W. (2019). Generation of an induced pluripotent stem cell line (TRNDi004-I) from a Niemann-Pick disease type B patient carrying a heterozygous mutation of p. L43_A44delLA in the SMPD1 gene. Stem cell research37, 101436.
    • Hong, J., Xu, M., Li, R., Cheng, Y. S., Kouznetsova, J., Beers, J., … & Zheng, W. (2019). Generation of an induced pluripotent stem cell line (TRNDi008-A) from a Hunter syndrome patient carrying a hemizygous 208insC mutation in the IDS gene. Stem cell research37, 101451.
    • Cheng, Y. S., Li, R., Baskfield, A., Beers, J., Zou, J., Liu, C., & Zheng, W. (2019). A human induced pluripotent stem cell line (TRNDi007-B) from an infantile onset Pompe patient carrying p. R854X mutation in the GAA gene. Stem cell research37, 101435.
    • Yang, S., Cheng, Y. S., Li, R., Pradhan, M., Hong, J., Beers, J., … & Zheng, W. (2019). An induced pluripotent stem cell line (TRNDi010-C) from a patient carrying a homozygous p. R401X mutation in the NGLY1 gene. Stem cell research39, 101496.
    • Baskfield, A., Li, R., Beers, J., Zou, J., Liu, C., & Zheng, W. (2019). An induced pluripotent stem cell line (TRNDi009-C) from a Niemann-Pick disease type A patient carrying a heterozygous p. L302P (c. 905 T> C) mutation in the SMPD1 gene. Stem cell research38, 101461.
    • Huang, W., Xu, M., Li, R., Baskfield, A., Kouznetsova, J., Beers, J., … & Zheng, W. (2019). An induced pluripotent stem cell line (TRNDi006-A) from a MPS IIIB patient carrying homozygous mutation of p. Glu153Lys in the NAGLU gene. Stem Cell Research, 101427.
    • Sundararaj, K. P., Rodgers, J., Angel, P., Wolf, B., & Nowling, T. K. (2020). Neuraminidase activity mediates IL-6 production through TLR4 and p38/ERK MAPK signaling in MRL/lpr mesangial cells. bioRxiv.
    • Li, R., Baskfield, A., Lin, Y., Beers, J., Zou, J., Liu, C., … & Zheng, W. (2019). Generation of an induced pluripotent stem cell line (TRNDi003-A) from a Noonan syndrome with multiple lentigines (NSML) patient carrying a p. Q510P mutation in the PTPN11 gene. Stem cell research, 34, 101374.
    • Li, R., Pradhan, M., Xu, M., Baskfield, A., Farkhondeh, A., Cheng, Y. S., … & Rodems, S. (2018). Generation of an induced pluripotent stem cell line (TRNDi002-B) from a patient carrying compound heterozygous p. Q208X and p. G310G mutations in the NGLY1 gene. Stem Cell Research, 101362.
    • Poli, M. C., Ebstein, F., Nicholas, S. K., de Guzman, M. M., Forbes, L. R., Chinn, I. K., … & Coban-Akdemir, Z. H. (2018). Heterozygous Truncating Variants in POMP Escape Nonsense-Mediated Decay and Cause a Unique Immune Dysregulatory Syndrome. The American Journal of Human Genetics, 102, 1-17. https://doi.org/10.1016/j.ajhg.2018.04.010
    • Vozdek, R., Long, Y., & Ma, D. K. (2018). The receptor tyrosine kinase HIR-1 coordinates HIF-independent responses to hypoxia and extracellular matrix injury. Sci. Signal., 11(550), eaat0138

PRODUCTS

  • Custom Mouse Injection-Ready Kit (Validated)

    In vivo validated Cas9 mRNAs

  • TARGATT™ Site-Specific Knock-in Cell Lines

    Book Chapters

    Master Cell Line

    • Chi, X., Zheng, Q., Jiang, R., Chen-Tsai, R. Y., & Kong, L. J. (2019). A system for site-specific integration of transgenes in mammalian cells. PLOS ONE14(7), e0219842.

    Description of the technology

    • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., … Calos, M. P. (2014). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research42(5), e34. http://doi.org/10.1093/nar/gkt1290.
    • Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., & Luo, L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences of the United States of America108(19), 7902–7907. http://doi.org/10.1073/pnas.1019507108.

    Commentary, comparison with other transgenic methods

    • Rossant, J., Nutter, L. M., & Gertsenstein, M. (2011). Engineering the embryo. Proceedings of the National Academy of Sciences108(19), 7659-7660.

    Tet inducible mice generated by TARGATT™

    Advantage of Hipp11 (H11) locus

    Applications for mice generated by TARGATT™ (and cited/published articles)

    • Carlson, H. L., & Stadler, H. S. (2019). Development and functional characterization of a lncRNA‐HIT conditional loss of function allele. genesis, e23351.
    • Chande, S., Ho, B., Fetene, J., & Bergwitz, C. (2019). Transgenic mouse model for conditional expression of influenza hemagglutinin-tagged human SLC20A1/PIT1. PloS one14(10), e0223052. doi:10.1371/journal.pone.0223052
    • Hu, Q., Ye, Y., Chan, L. C., Li, Y., Liang, K., Lin, A., … & Pan, Y. (2019). Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nature immunology, 1.
    • Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., … & Ahituv, N. (2018). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, eaau0629.
    • Barrett, R. D., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C., Foll, M., … & Hoekstra, H. E. (2018). The fitness consequences of genetic variation in wild populations of mice. bioRxiv, 383240.
    • Ibrahim, L. A., Huang, J. J., Wang, S. Z., Kim, Y. J., Li, I., & Huizhong, W. (2018). Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cerebral Cortex, 1-14.
    • Kumar, A., Dhar, S., Campanelli, G., Butt, N. A., Schallheim, J. M., Gomez, C. R., & Levenson, A. S. (2018). MTA 1 drives malignant progression and bone metastasis in prostate cancer. Molecular oncology.
    • Jang, Y., Wang, C., Broun, A., Park, Y. K., Zhuang, L., Lee, J. E., … & Ge, K. (2018). H3. 3K4M destabilizes enhancer epigenomic writers MLL3/4 and impairs adipose tissue development. bioRxiv, 301986. doi:https://doi.org/10.1101/301986
    • Tang, Y., Kwon, H., Neel, B. A., Kasher-Meron, M., Pessin, J., Yamada, E., & Pessin, J. E. (2018). The fructose-2, 6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. Journal of Biological Chemistry, jbc-RA118.
    • Chen, M., Geoffroy, C. G., Meves, J. M., Narang, A., Li, Y., Nguyen, M. T., … & Elzière, L. (2018). Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports22(13), 3587-3597.
    • Kido, T., Sun, Z., & Lau, Y.-F. C. (2017). Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice. Scientific Reports7, 4113. http://doi.org/10.1038/s41598-017-04117-6.
    • Nouri, N., & Awatramani, R. (2017). A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development144(5), 916-927.
    • Li, K., Wang, F., Cao, W. B., Lv, X. X., Hua, F., Cui, B., … & Yu, J. M. (2017). TRIB3 Promotes APL Progression through Stabilization of the Oncoprotein PML-RARα and Inhibition of p53-Mediated Senescence. Cancer Cell31(5), 697-710.
    • Matharu, N., Rattanasopha, S., Maliskova, L., Wang, Y., Hardin, A., Vaisse, C., & Ahituv, N. (2017). Promoter or Enhancer Activation by CRISPRa Rescues Haploinsufficiency Caused Obesity. bioRxiv, 140426.
    • Jiang, T., Kindt, K., & Wu, D. K. (2017). Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. eLife, 6, e23661.
    • Booze, M. L., Hansen, J. M., & Vitiello, P. F. (2016). A Novel Mouse Model for the Identification of Thioredoxin-1 Protein Interactions. Free Radical Biology & Medicine99, 533–543. http://doi.org/10.1016/j.freeradbiomed.2016.09.013.
    • Feng, D., Dai, S., Liu, F., Ohtake, Y., Zhou, Z., Wang, H., … & Hayat, U. (2016). Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. The Journal of clinical investigation126(6), 2321-2333.
    • Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I. I., … Finkel, T. (2015). Measuring in vivo mitophagy. Molecular Cell60(4), 685–696. http://doi.org/10.1016/j.molcel.2015.10.009.
    • Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K., & Bruneau, B. G. (2014). Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife3, e03848. http://doi.org/10.7554/eLife.03848.
    • Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M., & Smith, M. C. M. (2014). New Applications for Phage Integrases. Journal of Molecular Biology426(15), 2703–2716. http://doi.org/10.1016/j.jmb.2014.05.014.
    • Chen-Tsai, R. Y., Jiang, R., Zhuang, L., Wu, J., Li, L., & Wu, J. (2014). Genome editing and animal models. Chinese science bulletin59(1), 1-6.
    • Park, K.-E., Park, C.-H., Powell, A., Martin, J., Donovan, D. M., & Telugu, B. P. (2016). Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins. International Journal of Molecular Sciences17(6), 810. http://doi.org/10.3390/ijms17060810.
    • Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A., & Kingsley, D. M. (2014). A molecular basis for classic blond hair color in Europeans. Nature Genetics46(7), 748–752. http://doi.org/10.1038/ng.2991.
    • Villamizar, C. A. (2014). Characterization of the vascular pathology in the acta2 r258c mouse model and cerebrovascular characterization of the acta2 null mouse. UT GSBS Dissertations and These (Open Access)Paper 508 (2014)

    CRISPR Cell Line Knock-Out, Knock-in, Point Mutation 

    • Tanic, J., Wang, Y., Lee, W., Coelho, N. M., Glogauer, M., & McCulloch, C. A. (2019). Adseverin modulates morphology and invasive function of MCF7 cells. Biochimica et Biophysica Acta (BBA)-Molecular Basis of Disease1865(10), 2716-2725.
    • Panda, D., Gjinaj, E., Bachu, M., Squire, E., Novatt, H., Ozato, K., & Rabin, R. L. (2019). IRF1 maintains optimal constitutive expression of antiviral genes and regulates the early antiviral response. Frontiers in immunology10, 1019.
    • Pisapia, P., Malapelle, U., Roma, G., Saddar, S., Zheng, Q., Pepe, F., … & Nikiforov, Y. E. (2019). Consistency and reproducibility of next‐generation sequencing in cytopathology: A second worldwide ring trial study on improved cytological molecular reference specimens. Cancer cytopathology127(5), 285-296.
    • Ilic, D. (2019). Latest developments in the field of stem cell research and regenerative medicine compiled from publicly available information and press releases from nonacademic institutions in October 2018. Regenerative medicine, 14(2), 85-92.
    • Simkin, D., Searl, T. J., Piyevsky, B. N., Forrest, M., Williams, L. A., Joshi, V., … & Penzes, P. (2019). Impaired M-current in KCNQ2 Encephalopathy Evokes Dyshomeostatic Modulation of Excitability. bioRxiv, 538371. https://doi.org/10.1101/538371
    • Jang, Y., Choi, J., Park, N., Kang, J., Kim, M., Kim, Y., & Ju, J. H. (2019). Development of immunocompatible pluripotent stem cells via CRISPR-based human leukocyte antigen engineering. Experimental & Molecular Medicine, 51(1), 3.
    • Colomar-Carando, N., Meseguer, A., Jutz, S., Herrera-Fernández, V., Olvera, A., Kiefer, K., … & Vicente, R. (2018). Zip6 Transporter Is an Essential Component of the Lymphocyte Activation Machinery. The Journal of Immunology, ji1800689.
    • Tanic, J. (2018). A Role for Adseverin in the Invasion and Migration of MCF7 Breast Adenocarcinoma Cells (Doctoral dissertation).
    • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., … & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
    • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., … & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
    • Yin, Y., Garcia, M. R., Novak, A. J., Saunders, A. M., Ank, R. S., Nam, A. S., & Fisher, L. W. (2018). Surf4 (Erv29p) binds amino-terminal tripeptide motifs of soluble cargo proteins with different affinities, enabling prioritization of their exit from the endoplasmic reticulum. PLoS biology, 16(8), e2005140.
    • Selvan, N., George, S., Serajee, F. J., Shaw, M., Hobson, L., Kalscheuer, V. M., … & Schwartz, C. E. (2018). O-GlcNAc transferase missense mutations linked to X-linked intellectual disability deregulate genes involved in cell fate determination and signaling. Journal of Biological Chemistry, jbc-RA118.
    • Smalley, E. (2018). FDA warns public of dangers of DIY gene therapy. https://doi.org/10.1038/nbt0218-119
    • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., … & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of clinical investigation128(3).
    • Boi, S., Ferrell, M. E., Zhao, M., Hasenkrug, K. J., & Evans, L. H. (2018). Mouse APOBEC3 expression in NIH 3T3 cells mediates hypermutation of AKV murine leukemia virus. Virology518, 377-384. https://doi.org/10.1016/j.virol.2018.03.014.
    • Molinski, S. V., et al. (2017). Orkambi® and amplifier co‐therapy improves function from a rare CFTR mutation in gene‐edited cells and patient tissue. EMBO Molecular Medicine, e201607137.
    • Petrovic, P. B. (2017). Myosin Phosphatase Rho-interacting Protein Regulates DDR1-mediated Collagen Tractional Remodeling (Doctoral dissertation, University of Toronto (Canada)).
    • Peng, L., Zhang, H., Hao, Y., Xu, F., Yang, J., Zhang, R., … & Chen, C. (2016). Reprogramming macrophage orientation by microRNA 146b targeting transcription factor IRF5. EBioMedicine14, 83-96.
    • Hu, J. K., Crampton, J. C., Locci, M., & Crotty, S. (2016). CRISPR-mediated Slamf1Δ/Δ Slamf5Δ/Δ Slamf6Δ/Δ triple gene disruption reveals NKT cell defects but not T follicular helper cell defects. PloS one11(5), e0156074.
    • Smalley, E. (2016). CRISPR mouse model boom, rat model renaissance. Nature Biotechnology. 34, 893–894.
    • Baker, M. (2014). Gene editing at CRISPR speed. Nature biotechnology32(4), 309-313.
  • Book Chapters

    Master Cell Line

    • Chi, X., Zheng, Q., Jiang, R., Chen-Tsai, R. Y., & Kong, L. J. (2019). A system for site-specific integration of transgenes in mammalian cells. PLOS ONE14(7), e0219842.

    Description of the technology

    • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., … Calos, M. P. (2014). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic Acids Research42(5), e34. http://doi.org/10.1093/nar/gkt1290.
    • Tasic, B., Hippenmeyer, S., Wang, C., Gamboa, M., Zong, H., Chen-Tsai, Y., & Luo, L. (2011). Site-specific integrase-mediated transgenesis in mice via pronuclear injection. Proceedings of the National Academy of Sciences of the United States of America108(19), 7902–7907. http://doi.org/10.1073/pnas.1019507108.

    Commentary, comparison with other transgenic methods

    • Rossant, J., Nutter, L. M., & Gertsenstein, M. (2011). Engineering the embryo. Proceedings of the National Academy of Sciences108(19), 7659-7660.

    Tet inducible mice generated by TARGATT™

    Advantage of Hipp11 (H11) locus


    Applications for mice generated by TARGATT™ (and cited/published articles)

    • Lindtner, S., Catta-Preta, R., Tian, H., Su-Feher, L., Price, J. D., Dickel, D. E., … & Pennacchio, L. A. (2019). Genomic Resolution of DLX-Orchestrated Transcriptional Circuits Driving Development of Forebrain GABAergic Neurons. Cell reports, 28(8), 2048-2063.
    • Wang, T. A., Teo, C. F., Åkerblom, M., Chen, C., Tynan-La Fontaine, M., Greiner, V. J., … & Jan, L. Y. (2019). Thermoregulation via Temperature-Dependent PGD2 Production in Mouse Preoptic Area. Neuron, 103(2), 309-322.
    • Clarke, B. A., Majumder, S., Zhu, H., Lee, Y. T., Kono, M., Li, C., … & Byrnes, C. (2019). The Ormdl genes regulate the sphingolipid synthesis pathway to ensure proper myelination and neurologic function in mice. eLife8.
    • Carlson, H. L., & Stadler, H. S. (2019). Development and functional characterization of a lncRNA‐HIT conditional loss of function allele. genesis, e23351.
    • Chande, S., Ho, B., Fetene, J., & Bergwitz, C. (2019). Transgenic mouse model for conditional expression of influenza hemagglutinin-tagged human SLC20A1/PIT1. PloS one14(10), e0223052. doi:10.1371/journal.pone.0223052
    • Hu, Q., Ye, Y., Chan, L. C., Li, Y., Liang, K., Lin, A., … & Pan, Y. (2019). Oncogenic lncRNA downregulates cancer cell antigen presentation and intrinsic tumor suppression. Nature immunology, 1.
    • Matharu, N., Rattanasopha, S., Tamura, S., Maliskova, L., Wang, Y., Bernard, A., … & Ahituv, N. (2018). CRISPR-mediated activation of a promoter or enhancer rescues obesity caused by haploinsufficiency. Science, eaau0629.
    • Barrett, R. D., Laurent, S., Mallarino, R., Pfeifer, S. P., Xu, C. C., Foll, M., … & Hoekstra, H. E. (2018). The fitness consequences of genetic variation in wild populations of mice. bioRxiv, 383240.
    • Ibrahim, L. A., Huang, J. J., Wang, S. Z., Kim, Y. J., Li, I., & Huizhong, W. (2018). Sparse Labeling and Neural Tracing in Brain Circuits by STARS Strategy: Revealing Morphological Development of Type II Spiral Ganglion Neurons. Cerebral Cortex, 1-14.
    • Kumar, A., Dhar, S., Campanelli, G., Butt, N. A., Schallheim, J. M., Gomez, C. R., & Levenson, A. S. (2018). MTA 1 drives malignant progression and bone metastasis in prostate cancer. Molecular oncology.
    • Jang, Y., Wang, C., Broun, A., Park, Y. K., Zhuang, L., Lee, J. E., … & Ge, K. (2018). H3. 3K4M destabilizes enhancer epigenomic writers MLL3/4 and impairs adipose tissue development. bioRxiv, 301986. doi:https://doi.org/10.1101/301986
    • Tang, Y., Kwon, H., Neel, B. A., Kasher-Meron, M., Pessin, J., Yamada, E., & Pessin, J. E. (2018). The fructose-2, 6-bisphosphatase TIGAR suppresses NF-κB signaling by directly inhibiting the linear ubiquitin assembly complex LUBAC. Journal of Biological Chemistry, jbc-RA118.
    • Chen, M., Geoffroy, C. G., Meves, J. M., Narang, A., Li, Y., Nguyen, M. T., … & Elzière, L. (2018). Leucine Zipper-Bearing Kinase Is a Critical Regulator of Astrocyte Reactivity in the Adult Mammalian CNS. Cell Reports22(13), 3587-3597.
    • Kido, T., Sun, Z., & Lau, Y.-F. C. (2017). Aberrant activation of the human sex-determining gene in early embryonic development results in postnatal growth retardation and lethality in mice. Scientific Reports7, 4113. http://doi.org/10.1038/s41598-017-04117-6.
    • Nouri, N., & Awatramani, R. (2017). A novel floor plate boundary defined by adjacent En1 and Dbx1 microdomains distinguishes midbrain dopamine and hypothalamic neurons. Development144(5), 916-927.
    • Li, K., Wang, F., Cao, W. B., Lv, X. X., Hua, F., Cui, B., … & Yu, J. M. (2017). TRIB3 Promotes APL Progression through Stabilization of the Oncoprotein PML-RARα and Inhibition of p53-Mediated Senescence. Cancer Cell31(5), 697-710.
    • Matharu, N., Rattanasopha, S., Maliskova, L., Wang, Y., Hardin, A., Vaisse, C., & Ahituv, N. (2017). Promoter or Enhancer Activation by CRISPRa Rescues Haploinsufficiency Caused Obesity. bioRxiv, 140426.
    • Jiang, T., Kindt, K., & Wu, D. K. (2017). Transcription factor Emx2 controls stereociliary bundle orientation of sensory hair cells. eLife, 6, e23661.
    • Booze, M. L., Hansen, J. M., & Vitiello, P. F. (2016). A Novel Mouse Model for the Identification of Thioredoxin-1 Protein Interactions. Free Radical Biology & Medicine99, 533–543. http://doi.org/10.1016/j.freeradbiomed.2016.09.013.
    • Feng, D., Dai, S., Liu, F., Ohtake, Y., Zhou, Z., Wang, H., … & Hayat, U. (2016). Cre-inducible human CD59 mediates rapid cell ablation after intermedilysin administration. The Journal of clinical investigation126(6), 2321-2333.
    • Sun, N., Yun, J., Liu, J., Malide, D., Liu, C., Rovira, I. I., … Finkel, T. (2015). Measuring in vivo mitophagy. Molecular Cell60(4), 685–696. http://doi.org/10.1016/j.molcel.2015.10.009.
    • Devine, W. P., Wythe, J. D., George, M., Koshiba-Takeuchi, K., & Bruneau, B. G. (2014). Early patterning and specification of cardiac progenitors in gastrulating mesoderm. eLife3, e03848. http://doi.org/10.7554/eLife.03848.
    • Fogg, P. C. M., Colloms, S., Rosser, S., Stark, M., & Smith, M. C. M. (2014). New Applications for Phage Integrases. Journal of Molecular Biology426(15), 2703–2716. http://doi.org/10.1016/j.jmb.2014.05.014.
    • Chen-Tsai, R. Y., Jiang, R., Zhuang, L., Wu, J., Li, L., & Wu, J. (2014). Genome editing and animal models. Chinese science bulletin59(1), 1-6.
    • Park, K.-E., Park, C.-H., Powell, A., Martin, J., Donovan, D. M., & Telugu, B. P. (2016). Targeted Gene Knockin in Porcine Somatic Cells Using CRISPR/Cas Ribonucleoproteins. International Journal of Molecular Sciences17(6), 810. http://doi.org/10.3390/ijms17060810.
    • Guenther, C. A., Tasic, B., Luo, L., Bedell, M. A., & Kingsley, D. M. (2014). A molecular basis for classic blond hair color in Europeans. Nature Genetics46(7), 748–752. http://doi.org/10.1038/ng.2991.
    • Villamizar, C. A. (2014). Characterization of the vascular pathology in the acta2 r258c mouse model and cerebrovascular characterization of the acta2 null mouse. UT GSBS Dissertations and These (Open Access)Paper 508 (2014)
  •  CRISPRCRITTERS™ Custom Rat Injection-Ready Kit (Validated)

  • Human Primary Cell (Normal)

     

    ASE-5168

    • Brodaczewska, K. K., Szczylik, C., Fiedorowicz, M., Porta, C., & Czarnecka, A. M. (2016). Choosing the right cell line for renal cell cancer research. Molecular cancer15(1), 83.

    ASE-5063 – Human Kidney Epithelial Cells (Healthy)

    • Matak, D., Brodaczewska, K. K., Lipiec, M., Szymanski, Ł., Szczylik, C., & Czarnecka, A. M. (2017). Colony, hanging drop, and methylcellulose three dimensional hypoxic growth optimization of renal cell carcinoma cell lines. Cytotechnology, 1-14.
    • Matak, D., Brodaczewska, K. K., Szczylik, C., Koch, I., Myszczyszyn, A., Lipiec, M., … & Czarnecka, A. M. (2017). Functional significance of CD105-positive cells in papillary renal cell carcinoma. BMC cancer17(1), 21.
    • Khan, M. I., Czarnecka, A. M., Lewicki, S., Helbrecht, I., Brodaczewska, K., Koch, I., … & Szczylik, C. (2016). Comparative gene expression profiling of primary and metastatic renal cell carcinoma stem cell-like cancer cells. PloS one11(11), e0165718.

    ASE-7001

    Samura, M., Morikage, N., Suehiro, K., Tanaka, Y., Nakamura, T., Nishimoto, A., … Hamano, K. (2016). Combinatorial Treatment with Apelin-13 Enhances the Therapeutic Efficacy of a Preconditioned Cell-Based Therapy for Peripheral Ischemia. Scientific Reports6, 19379. http://doi.org/10.1038/srep19379.

    Human Skin Fibroblast Total RNA

    • Fujiwara, R., Takenaka, S., Hashimoto, M., Narawa, T., & Itoh, T. (2014). Expression of human solute carrier family transporters in skin: possible contributor to drug-induced skin disorders. Scientific Reports4, 5251. http://doi.org/10.1038/srep05251
    • Sumida, K., Kawana, M., Kouno, E., Itoh, T., Takano, S., Narawa, T., … Fujiwara, R. (2013). Importance of UDP-Glucuronosyltransferase 1A1 Expression in Skin and Its Induction by UVB in Neonatal Hyperbilirubinemia. Molecular Pharmacology84(5), 679–686. http://doi.org/10.1124/mol.113.088112.
    • Takenaka, S., Itoh, T., & Fujiwara, R. (2013). Expression pattern of human ATP‐binding cassette transporters in skin. Pharmacology research & perspectives1(1).

    Total RNA-ASD-0088

    Human Cardiomyocytes Total RNA-ASD-0061

    • Son, M. Y., et al. (2017). Transcriptome dynamics of human pluripotent stem cell-derived contracting cardiomyocytes using an embryoid body model with fetal bovine serum. Mol. BioSyst., doi:10.1039/C7MB00174F.
    • Jung, K. B., Son, Y. S., Lee, H., Jung, C. R., Kim, J., & Son, M. Y. (2017). Transcriptome dynamics of human pluripotent stem cell-derived contracting cardiomyocytes using an embryoid body model with fetal bovine serum. Molecular BioSystems.

    HEK293T cells

    Murine Endothelial cells

  • MAPK Mutation Panel FFPE Reference Standards

    •  Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D (2013) MEK and the inhibitors: from bench to bedside. J. Hematol. Oncol. 6, 1–11
    • Santarpia L, Lippman SM, El-Naggar AK (2012) Targeting the MAPK–RAS–RAF signaling pathway in cancer therapy, Expert Opin. Ther. Targets 16, 103–119
    • Relling MV, Evans WE (2015) Pharmacogenomics in the clinic, Nature 526, 343–350
  • MEF Feeder Cells

    DR4 MEF Feeder Cells

    • Ruiz-Gutierrez, M., Bölükbaşı, Ö. V., Alexe, G., Kotini, A. G., Ballotti, K., Joyce, C. E., … & Papapetrou, E. P. (2019). Therapeutic discovery for marrow failure with MDS predisposition using pluripotent stem cells. JCI insight4(12).
    • Wagner, M., Yoshihara, M., Douagi, I., Damdimopoulos, A., Panula, S., Petropoulos, S., … & Hovatta, O. (2019). Single cell map of the human ovarian cortex. bioRxiv, 791343.
    • Takahashi, M., & Yamazaki, S. (2019). Generation of a human induced pluripotent stem cell line, IMSUTi002-A-1, harboring the leukemia-specific fusion gene ETV6-RUNX1. Stem cell research40, 101546.
    • Gruzdev, A., Scott, G. J., Hagler, T. B., & Ray, M. K. (2019). CRISPR/Cas9-Assisted Genome Editing in Murine Embryonic Stem Cells. In Mouse Models of Innate ImmunityHumana Press, New York, NY. 1690:1-21.
    • Snijders, K. E., Cooper, J. D., Vallier, L., & Bertero, A. (2019). Conditional Gene Knockout in Human Cells with Inducible CRISPR/Cas9. In: Luo Y. (eds) CRISPR Gene Editing. Methods in Molecular Biology, Humana Press, New York, NY. 1961:185-209.
    • Tan, C. E. H. (2018). Establishing a genetically engineered mouse ES cell line expressing an inducible Xist transgene along chromosome 19 (Doctoral dissertation).
    • Fogarty, N. M., McCarthy, A., Snijders, K. E., Powell, B. E., Kubikova, N., Blakeley, P., … & Maciulyte, V. (2017). Genome editing reveals a role for OCT4 in human embryogenesis. Nature, 550(7674), 67-73.
    • Molokanova, O., Schönig, K., Weng, S. Y., Wang, X., Bros, M., Diken, M., … & Eshkind, L. (2017). Inducible knockdown of procollagen I protects mice from liver fibrosis and leads to dysregulated matrix genes and attenuated inflammation. Matrix Biologyhttps://doi.org/10.1016/j.matbio.2017.11.002.
    • Marttila, S. (2017). Establishment and characterisation of new human induced pluripotent stem cell lines and cardiomyocyte differentiation: a comparative view. Master’s Thesis, University of Tampere, May 2017.
    • Honda, A., Kawano, Y., Izu, H., Choijookhuu, N., Honsho, K., Nakamura, T., … & Sankai, T. (2017). Discrimination of stem cell status after subjecting cynomolgus monkey pluripotent stem cells to naive conversion. Scientific reports7, 45285.
    • Friedel, T., Jung-Klawitter, S., Sebe, A., Schenk, F., Modlich, U., Ivics, Z., … & Schneider, I. C. (2016). CD30 Receptor-Targeted Lentiviral Vectors for Human Induced Pluripotent Stem Cell-Specific Gene Modification. Stem cells and development25(9), 729-739.
    • Ludwig, M., Kitzenberg, D., & Chick, W. S. (2015). Forward Genetic Approach to Uncover Stress Resistance Genes in Mice—A High-throughput Screen in ES Cells. Journal of visualized experiments: JoVE, (105).
    • Neri, T., Muggeo, S., Paulis, M., Caldana, M. E., Crisafulli, L., Strina, D., … & Scanziani, E. (2015). Targeted gene correction in osteopetrotic-induced pluripotent stem cells for the generation of functional Osteoclasts. Stem cell reports5(4), 558-568.
    • Kraus, P., Sivakamasundari, V., Xing, X., & Lufkin, T. (2014). Generating mouse lines for lineage tracing and knockout studies. In Mouse Genetics(pp. 37-62). Humana Press, New York, NY.
    • Zhu, F., Gamboa, M., Farruggio, A. P., Hippenmeyer, S., Tasic, B., Schüle, B., … & Calos, M. P. (2013). DICE, an efficient system for iterative genomic editing in human pluripotent stem cells. Nucleic acids research42(5), e34-e34.
    • Ivics, Z., Izsvák, Z., Chapman, K. M., & Hamra, F. K. (2011). Sleeping Beauty transposon mutagenesis of the rat genome in spermatogonial stem cells. Methods53(4), 356-365.
    • Ivics, Z., Izsvák, Z., Medrano, G., Chapman, K. M., & Hamra, F. K. (2011). Sleeping Beauty transposon mutagenesis in rat spermatogonial stem cells. Nature protocols6(10), 1521.
    • Pan, Y. (2011). Culturing of C57BL/6 Mouse Embryonic Stem (ES) Cell Line. Bio-protocol Bio101: e142. DOI: 10.21769/BioProtoc.142.
    • Chapman, K. M., Saidley-Alsaadi, D., Syvyk, A. E., Shirley, J. R., Thompson, L. M., & Hamra, F. K. (2011). Rat spermatogonial stem cell-mediated gene transfer. In Advanced Protocols for Animal Transgenesis (pp. 237-266). Springer, Berlin, Heidelberg.

    CF-1 MEF Feeder Cells

    • Thakurela, S., Sindhu, C., Yurkovsky, E., Riemenschneider, C., Smith, Z. D., Nachman, I., & Meissner, A. (2019). Differential regulation of OCT4 targets facilitates reacquisition of pluripotency. Nature communications10(1), 1-11.
    • Smela, M. P., Sybirna, A., Wong, F. C., & Surani, M. A. (2019). Testing the role of SOX15 in human primordial germ cell fate. Wellcome open research4.
    • Spada, F., Schiffers, S., Kirchner, A., Zhang, Y., Kosmatchev, O., Korytiakova, E., … & Carell, T. (2019). Oxidative and non-oxidative active turnover of genomic methylcytosine in distinct pluripotent states. BioRxiv, 846584.
    • Kiamehr, M., Klettner, A., Richert, E., Koskela, A., Koistinen, A., Skottman, H., … & Juuti-Uusitalo, K. (2019). Compromised Barrier Function in Human Induced Pluripotent Stem-Cell-Derived Retinal Pigment Epithelial Cells from Type 2 Diabetic Patients. International journal of molecular sciences20(15), 3773.
    • Barber, K., Studer, L., & Fattahi, F. (2019). Derivation of enteric neuron lineages from human pluripotent stem cells. Nature protocols, 14:1261–1279.
    • Berecz, T., Husvéth-Tóth, M., Mioulane, M., Merkely, B., Apáti, Á., & Földes, G. (2019). Generation and Analysis of Pluripotent Stem Cell-Derived Cardiomyocytes and Endothelial Cells for High Content Screening Purposes. In: Methods in Molecular Biology. Humana Press.
    • Madak-Erdogan, Z., Band, S., Zhao, Y. C., Smith, B. P., Kulkoyluoglu-Cotul, E., Zuo, Q., … & Kim, S. H. (2019). Free fatty acids rewire cancer metabolism in obesity-associated breast cancer via estrogen receptor and mTOR signaling. Cancer research, canres-2849.
    • Deuse, T., Hu, X., Gravina, A., Wang, D., Tediashvili, G., De, C., … & Davis, M. M. (2019). Hypoimmunogenic derivatives of induced pluripotent stem cells evade immune rejection in fully immunocompetent allogeneic recipients. Nature biotechnology, 1.
    • Kiamehr, M. (2019). Induced pluripotent stem cell-derived hepatocyte-like cells: The lipid status in differentiation, functionality, and de-differentiation of hepatic cells. Tampere University Dissertations.
    • Yeom, K. H., Mitchell, S., Linares, A. J., Zheng, S., Lin, C. H., Wang, X. J., … & Black, D. L. (2018). Polypyrimidine Tract Binding Protein blocks microRNA-124 biogenesis to enforce its neuronal specific expression. bioRxiv, 297515https://doi.org/10.1101/297515
    • Chai, S., Wan, X., Ramirez-Navarro, A., Tesar, P. J., Kaufman, E. S., Ficker, E., … & Deschênes, I. (2018). Physiological genomics identifies genetic modifiers of long QT syndrome type 2 severity. The Journal of Clinical Investigation128(3). DOI: 10.1172/JCI94996
    • Oh, Y., Zhang, F., Wang, Y., Lee, E. M., Choi, I. Y., Lim, H., … & Wu, H. (2017). Zika virus directly infects peripheral neurons and induces cell death. Nature Neuroscience, 20(9), 1209-1212.
    • Kiamehr, M., Viiri, L. E., Vihervaara, T., Koistinen, K. M., Hilvo, M., Ekroos, K., … & Aalto-Setälä, K. (2017). Lipidomic profiling of patient-specific induced pluripotent stem cell-derived hepatocyte-like cells. Disease Models & Mechanisms, dmm-030841.
    • Wong, K. G., et al. (2017). CryoPause: A New Method to Immediately Initiate Experiments after Cryopreservation of Pluripotent Stem Cells. http://www.cell.com/stem-cell-reports/pdfExtended/S2213-6711(17)30217-5.
    • Cvetkovic, C., et al. (2017). A 3D-printed platform for modular neuromuscular motor units. Microsystems & Nanoengineering, 3, 17015.
    • Kurapati, S., et al. (2017). Role of JNK pathway in varicella-zoster virus lytic infection and reactivation. Journal of Virology, JVI-00640.
    • Kotini, A. G., Chang, C. J., Chow, A., Yuan, H., Ho, T. C., Wang, T., … & Teruya-Feldstein, J. (2017). Stage-specific human induced pluripotent stem cells map the progression of myeloid transformation to transplantable leukemia. Cell Stem Cell20(3), 315-328.
    • Maghen, L., Shlush, E., Gat, I., Filice, M., Barretto, T. A., Jarvi, K., … & Librach, C. L. (2017). Human umbilical perivascular cells (HUCPVCs): a novel source of mesenchymal stromal-like (MSC) cells to support the regeneration of the testicular niche. Reproduction153(1), 85-95.
    • Nguyen, T. T. T., Park, W. S., Park, B. O., Kim, C. Y., Oh, Y., Kim, J. M., … & Hahn, K. M. (2016). PLEKHG3 enhances polarized cell migration by activating actin filaments at the cell front. Proceedings of the National Academy of Sciences113(36), 10091-10096.
    • Uzel, S. G., Platt, R. J., Subramanian, V., Pearl, T. M., Rowlands, C. J., Chan, V., … & Kamm, R. D. (2016). Microfluidic device for the formation of optically excitable, three-dimensional, compartmentalized motor units. Science advances2(8), e1501429.
    • Wang, J., Singh, M., Sun, C., Besser, D., Prigione, A., Ivics, Z., … & Izsvák, Z. (2016). Isolation and cultivation of naive-like human pluripotent stem cells based on HERVH expression. Nature protocols11(2), 327.
    • Mimura, S., Suga, M., Okada, K., Kinehara, M., Nikawa, H., & Furue, M. K. (2016). Bone morphogenetic protein 4 promotes craniofacial neural crest induction from human pluripotent stem cells. International Journal of Developmental Biology60(1-2-3), 21-28.
    • Kaini, R. R., Shen-Gunther, J., Cleland, J. M., Greene, W. A., & Wang, H. C. (2016). Recombinant xeno-free vitronectin supports self-renewal and pluripotency in protein-induced pluripotent stem cells. Tissue Engineering Part C: Methods22(2), 85-90.
    • Chambers, S. M., Mica, Y., Lee, G., Studer, L., & Tomishima, M. J. (2013). Dual-SMAD inhibition/WNT activation-based methods to induce neural crest and derivatives from human pluripotent stem cells. In Human Embryonic Stem Cell Protocols (pp. 329-343). Humana Press, New York, NY.
    • Nakshatri, H., Anjanappa, M., & Bhat-Nakshatri, P. (2015). Ethnicity-dependent and-independent heterogeneity in healthy normal breast hierarchy impacts tumor characterization. Scientific reports5, 13526.
    • Romanazzo, S., Forte, G., Morishima, K., & Taniguchi, A. (2015). IL-12 involvement in myogenic differentiation of C2C12 in vitro. Biomaterials science3(3), 469-479.
    • Ji, J., Zheng, X., Forgues, M., Yamashita, T., Wauthier, E. L., Reid, L. M., Wen, X., Song, Y., Wei, J. S., Khan, J., Thorgeirsson, S. S., … Wang, X. W. (2015). Identification of microRNAs specific for epithelial cell adhesion molecule-positive tumor cells in hepatocellular carcinoma. Hepatology (Baltimore, Md.)62(3), 829-40.
    • Linares, A. J., Lin, C. H., Damianov, A., Adams, K. L., Novitch, B. G., & Black, D. L. (2015). The splicing regulator PTBP1 controls the activity of the transcription factor Pbx1 during neuronal differentiation. Elife4, e09268.
    • Elo, T. (2014). Evaluation of the pluripotency of human induced pluripotent stem cells (hiPSCs) reprogrammed with integrative and non-integrative protocols and their differentiation into cardiomyocytes (Master’s thesis).
    • Kraus, P., Sivakamasundari, V., Xing, X., & Lufkin, T. (2014). Generating mouse lines for lineage tracing and knockout studies. In Mouse Genetics(pp. 37-62). Humana Press, New York, NY.
    • Fattahi, F., et al. (2014) Neural Crest Cells from Dual SMAD Inhibition. Current protocols in stem cell biology, 1H-9.
    • Xu, Z., et al. (2013) PLoS One8(1), e53146.
    • Guo, X., Disatnik, M.-H., Monbureau, M., Shamloo, M., Mochly-Rosen, D., & Qi, X. (2013). Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration. The Journal of Clinical Investigation123(12), 5371–5388. http://doi.org/10.1172/JCI70911
    • Zhao, H., Sun, N., Young, S. R., Nolley, R., Santos, J., Wu, J. C., & Peehl, D. M. (2013). Induced pluripotency of human prostatic epithelial cells. PLoS One8(5), e64503.
    • Jerebtsova, M., Kumari, N., Xu, M., Melo, G. B. A. D., Niu, X., Jeang, K. T., & Nekhai, S. (2012). HIV-1 resistant CDK2-knockdown macrophage-like cells generated from 293T cell-derived human induced pluripotent stem cells. Biology1(2), 175-195.
    • Linta, L., Stockmann, M., Kleinhans, K. N., Böckers, A., Storch, A., Zaehres, H., … & Liebau, S. (2011). Rat embryonic fibroblasts improve reprogramming of human keratinocytes into induced pluripotent stem cells. Stem cells and development21(6), 965-976.
    • Meng, X., Neises, A., Su, R. J., Payne, K. J., Ritter, L., Gridley, D. S., … & Zhang, X. B. (2012). Efficient reprogramming of human cord blood CD34+ cells into induced pluripotent stem cells with OCT4 and SOX2 alone. Molecular Therapy20(2), 408-416.

    Neo-resistant MEF Feeder Cells

    • Mansour, A. A., Gonçalves, J. T., Bloyd, C. W., Li, H., Fernandes, S., Quang, D., … & Gage, F. H. (2018). An in vivo model of functional and vascularized human brain organoids. Nature biotechnology36(5), 432. doi:10.1038/nbt.4127
    • Heim, C. N., Fanslow, D. A., & Dann, C. T. (2012). Development of quantitative microscopy-based assays for evaluating dynamics of living cultures of mouse spermatogonial stem/progenitor cells. Biology of reproduction87(4), 90-1.
    • Mauney, J. R., Ramachandran, A., Richard, N. Y., Daley, G. Q., Adam, R. M., & Estrada, C. R. (2010). All-trans retinoic acid directs urothelial specification of murine embryonic stem cells via GATA4/6 signaling mechanisms. PloS one5(7), e11513.

    SNL 76/7 (STO Cell Line)

    • Yang, J., Ryan, D. J., Lan, G., Zou, X., & Liu, P. (2019). In vitro establishment of expanded-potential stem cells from mouse pre-implantation embryos or embryonic stem cells. Nature protocols, 1.
    • Kime, C., Rand, T. A., Ivey, K. N., Srivastava, D., Yamanaka, S., & Tomoda, K. (2015). Practical integration‐free episomal methods for generating human induced pluripotent stem cells. Current protocols in human genetics87(1), 21-2.
    • Takahashi, K., Narita, M., Yokura, M., Ichisaka, T., & Yamanaka, S. (2009). Human induced pluripotent stem cells on autologous feeders. PloS one4(12), e8067.
    • Park, I. H., & Daley, G. Q. (2009). Human iPS cell derivation/reprogramming. Current protocols in stem cell biology8(1), 4A-1.
    • Okita, K., Ichisaka, T., & Yamanaka, S. (2007). Generation of germline-competent induced pluripotent stem cells. Nature448(7151), 313.
    • Takahashi, K., Okita, K., Nakagawa, M., & Yamanaka, S. (2007). Induction of pluripotent stem cells from fibroblast cultures. Nature protocols2(12), 3081.
    • McMahon, A. P., & Bradley, A. (1990). The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell62(6), 1073-1085.

    ESC-Sure™ FBS

    • Chory, E. J., Kirkland, J. G., Chang, C. Y., D’Andrea, V., Gourisankar, S., Dykhuizen, E. J., & Crabtree, G. J. (2019). Inhibition of a Selective SWI/SNF Function Synergizes with ATR Inhibitors in Cancer Cell Killing. bioRxiv, 660456.
    • Lv, Y., Xiao, F. J., Wang, Y., Zou, X. H., Wang, H., Wang, H. Y., … & Lu, Z. Z. (2019). Efficient gene transfer into T lymphocytes by fiber-modified human adenovirus 5. BMC biotechnology19(1), 23.
    • Paynter, J. M., Chen, J., Liu, X., & Nefzger, C. M. (2019). Propagation and maintenance of mouse embryonic stem cells. In Mouse Cell Culture, vol 1940  (pp. 33-45). Humana Press, New York, NY.
    • Chory, E. J., Calarco, J. P., Hathaway, N. A., Bell, O., Neel, D. S., & Crabtree, G. R. (2019). Nucleosome turnover regulates histone methylation patterns over the genome. Molecular cell73(1), 61-72.
    • Gatchalian, J., Malik, S., Ho, J., Lee, D. S., Kelso, T. W., Shokhirev, M. N., … & Hargreaves, D. C. (2018). A non-canonical BRD9-containing BAF chromatin remodeling complex regulates naive pluripotency in mouse embryonic stem cells. Nature communications9(1), 5139.
    • Chory, E. J., Calarco, J. P., Hathaway, N. A., Bell, O., Neel, D. S., & Crabtree, G. R. (2018). Nucleosome Turnover Regulates Histone Methylation Patterns over the Genome. Molecular cell.
    • Marian, C. A., Stoszko, M., Wang, L., Leighty, M. W., de Crignis, E., Maschinot, C. A., … & Duvall, J. R. (2018). Small Molecule Targeting of Specific BAF (mSWI/SNF) Complexes for HIV Latency Reversal. Cell Chemical Biology.
    • Hodges, H. C., Stanton, B. Z., Cermakova, K., Chang, C. Y., Miller, E. L., Kirkland, J. G., … & Crabtree, G. R. (2017). Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nature Structural & Molecular Biology, 1.
    • Braun, S. M. G., Kirkland, J. G., Chory, E. J., Husmann, D., Calarco, J. P., & Crabtree, G. R. (2017). Rapid and reversible epigenome editing by endogenous chromatin regulators. Nature Communications, 8, 560.http://doi.org/10.1038/s41467-017-00644-y.s
    • Dykhuizen, E. C., Carmody, L. C., & Tolliday, N. J. (2017). High-Throughput Screening of Small Molecule Transcriptional Regulators in Embryonic Stem Cells Using qRT-PCR. In Epigenetics and Gene Expression in Cancer, Inflammatory and Immune Diseases (pp. 81-95). Humana Press, New York, NY.
    • Stanton, B. Z., Hodges, C., Calarco, J. P., Braun, S. M. G., Ku, W. L., Kadoch, C., … Crabtree, G. R. (2017). SMARCA4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nature Genetics49(2), 282–288. http://doi.org/10.1038/ng.3735
    • Beske, P. H., Bradford, A. B., Grynovicki, J. O., Glotfelty, E. J., Hoffman, K. M., Hubbard, K. S., … & McNutt, P. M. (2015). Botulinum and tetanus neurotoxin-induced blockade of synaptic transmission in networked cultures of human and rodent neurons. Toxicological Sciences149(2), 503-515. doi: 10.1093/toxsci/kfv254
    • Miljan, E. (2015) The Business of Stem Cell Research Tools, in Stem Cells in Regenerative Medicine: Science, regulation and business strategies (eds A. A. Vertès, N. Qureshi, A. I. Caplan and L. E. Babiss), John Wiley & Sons, Ltd, Chichester, UK. doi: 10.1002/9781118846193.ch8.
    • Hubbard, K., Beske, P., Lyman, M., & McNutt, P. (2015). Functional evaluation of biological neurotoxins in networked cultures of stem cell-derived central nervous system neurons. Journal of visualized experiments: JoVE, (96).
    • Stanford Medicine Transgenic Research center (http://med.stanford.edu/transgenic/esmeflif.html)
    • Hathaway, N. A., Bell, O., Hodges, C., Miller, E. L., Neel, D. S., & Crabtree, G. R. (2012). Dynamics and memory of heterochromatin in living cells. Cell149(7), 1447-1460.
  • iPSC/ESCs

    Control iPSC Lines:

    • Tanaka, H., Homma, H., Fujita, K., Kondo, K., Yamada, S., Jin, X., … & Atsuta, N. (2020). YAP-dependent necrosis occurs in early stages of Alzheimer’s disease and regulates mouse model pathology. Nature Communications, 11(1), 1-22.
    • Su, S., Guntur, A. R., Nguyen, D. C., Fakory, S. S., Doucette, C. C., Leech, C., … & Sims-Lucas, S. (2018). A renewable source of human beige adipocytes for development of therapies to treat metabolic syndrome. Cell reports, 25(11), 3215-3228.
    • Lizarraga, S. B., Maguire, A. M., Ma, L., van Dyck, L. I., Wu, Q., Nagda, D., … & Cowen, M. H. (2018). Human neurons from Christianson syndrome iPSCs reveal allele-specific responses to rescue strategies. bioRxiv, 444232.
    • Tanaka, H., Kondo, K., Chen, X., Homma, H., Tagawa, K., Kerever, A., … & Fujita, K. (2018). The intellectual disability gene PQBP1 rescues Alzheimer’s disease pathology. Molecular Psychiatry, 1.
    • Kavyasudha C., Macrin D., ArulJothi K.N., Joseph J.P., Harishankar M.K., Devi A. (2018) Clinical Applications of Induced Pluripotent Stem Cells – Stato Attuale. In: Advances in Experimental Medicine and Biology. Springer, New York, NY. https://doi.org/10.1007/5584_2018_173.
    • Lin, Y., Linask, K. L., Mallon, B., Johnson, K., Klein, M., Beers, J., … & Zou, J. (2017). Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin‐Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem cells translational medicine, 6(2), 527-538.

    ASE-9208: Sporadic Parkinson’s disease line

    • Hsieh, C. H., Shaltouki, A., Gonzalez, A. E., da Cruz, A. B., Burbulla, L. F., Lawrence, E. S., … & Wang, X. (2016). Functional impairment in Miro degradation and mitophagy is a shared feature in familial and sporadic Parkinson’s disease. Cell Stem Cell, 19(6), 709-724.

    iPSC-differentiated cell lines

    • Gupta, G., Gliga, A., Hedberg, J., Serra, A., Greco, D., Odnevall Wallinder, I., & Fadeel, B. Cobalt nanoparticles trigger ferroptosis‐like cell death (oxytosis) in neuronal cells: Potential implications for neurodegenerative disease. The FASEB Journal.
    • Kussauer, S., David, R., & Lemcke, H. (2019). hiPSCs Derived Cardiac Cells for Drug and Toxicity Screening and Disease Modeling: What Micro-Electrode-Array Analyses Can Tell Us. Cells8(11), 1331.
    • Cheng, F., Fransson, L. Å., & Mani, K. (2019). The cyanobacterial neurotoxin β-N-methylamino-l-alanine prevents addition of heparan sulfate to glypican-1 and increases processing of amyloid precursor protein in dividing neuronal cells. Experimental Cell Research. https://doi.org/10.1016/j.yexcr.2019.03.041
    • Daily, N. J., et al. (2017). High-Throughput Phenotyping of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes and Neurons Using Electric Field Stimulation and High-Speed Fluorescence Imaging. ASSAY and Drug Development Technologies. 15(4): 178-188. https://doi.org/10.1089/adt.2017.781
    • Daily, N. J., Santos, R., Vecchi, J., Kemanli, P., & Wakatsuki, T. (2017). Calcium transient assays for compound screening with human iPSC-derived cardiomyocytes: Evaluating new tools. Journal of evolving stem cell research, 1(2), 1.
    • Daily, N. J., et al. (2015). Journal of Bioengineering & Biomedical Science, 2015.

    Mouse/ Rat/ Pig/ Guinea Pig

    3D-iPSC Matrix

    • Li, L., & LaBarbera, D. V. (2017). 3D High-Content Screening of Organoids for Drug Discovery. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering. 388-415. doi.org/10.1016/B978-0-12-409547-2.12329-7
  • Anti-SOX2 antibody:

    • Wang, T., Choi, E., Monaco, M. C. G., Major, E. O., Medynets, M., & Nath, A. (2015). Direct Induction of Human Neural Stem Cells from Peripheral Blood Hematopoietic Progenitor Cells. Journal of Visualized Experiments : JoVE, (95), 52298. Advance online publication. http://doi.org/10.3791/52298.
    • Almuraikhi, N. (2015). Direct differentiation of human iPS cells towards the erythroid lineage. Ph.D. Dissertation.

    Anti-TRA-1-60 antibody:

    • Ramalingam, S., London, V., Kandavelou, K., Cebotaru, L., Guggino, W., Civin, C., & Chandrasegaran, S. (2013). Generation and Genetic Engineering of Human Induced Pluripotent Stem Cells Using Designed Zinc Finger Nucleases. Stem Cells and Development, 22(4), 595–610. http://doi.org/10.1089/scd.2012.0245.

    Mouse ES-iPSC Characterization kit:

    Human ES-iPSC Characterization kit:

    • Southard, S. M., Kotipatruni, R. P., & Rust, W. L. (2018). Generation and selection of pluripotent stem cells for robust differentiation to insulin-secreting cells capable of reversing diabetes in rodents. PloS one, 13(9), e0203126
    • Tang, R., Jing, L., Willard, V. P., Wu, C. L., Guilak, F., Chen, J., & Setton, L. A. (2018). Differentiation of human induced pluripotent stem cells into nucleus pulposus-like cells. Stem Cell Research & Therapy, 9(1), 61.
    • Marei, H. E., Althani, A., Lashen, S., Cenciarelli, C., & Hasan, A. (2017). Genetically unmatched human iPSC and ESC exhibit equivalent gene expression and neuronal differentiation potential. Scientific Reports, 7(1), 17504.
    • Choi, J., Lee, S., Clement, K., Mallard, W., Tagliazucchi, G. M., Lim, H., … Hochedlinger, K. (2015). A comparison of genetically matched cell lines reveals the equivalence of human iPSCs and ESCs. Nature Biotechnology, 33(11), 1173–1181. http://doi.org/10.1038/nbt.3388
    • Martí Gutiérrez, N. (2015). Doctoral Thesis, Departamento de Bioquímica y Biología Molecular, Universidad de Valencia.
    • Fleming, W. H., & Hirschman, S. Z. (2015). U.S. Patent Application No. 14/410,508.
    • Wang, D. (2015). Individualized Cardiovascular Medicine: Identifying New Mechanisms to Inhibit the Development of Myointimal Hyperplasia.
    • Cassidy, L., Diaz, R., Chen-Tsai, R. Y., & Seigel, G. M. (2014). Comparative analysis of ABCG2+ and ABCG2-retinoblastoma cells in three-dimensional culture. Edorium Journal of Otolaryngology, 4, 1-7.
    • Li, Y., Wu, W.-H., Hsu, C.-W., Nguyen, H. V., Tsai, Y.-T., Chan, L., … Tsang, S. H. (2014). Gene Therapy in Patient-specific Stem Cell Lines and a Preclinical Model of Retinitis Pigmentosa With Membrane Frizzled-related Protein Defects. Molecular Therapy, 22(9), 1688–1697. http://doi.org/10.1038/mt.2014.100
    • Yagyu, S., Hoyos, V., Del Bufalo, F., & Brenner, M. K. (2015). An inducible caspase-9 suicide gene to improve the safety of therapy using human induced pluripotent stem cells. Molecular Therapy, 23(9), 1475-1485.
    • Li, Y., Tsai, Y.-T., Hsu, C.-W., Erol, D., Yang, J., Wu, W.-H., … Tsang, S. H. (2012). Long-term Safety and Efficacy of Human-Induced Pluripotent Stem Cell (iPS) Grafts in a Preclinical Model of Retinitis Pigmentosa. Molecular Medicine, 18(1), 1312–1319. http://doi.org/10.2119/molmed.2012.00242
    • Jing, L., Christoforou, N., Leong, K. W., Setton, L. A., & Chen, J. (2012). Differentiation potential of human induced pluripotent stem cells (iPSCs) to nucleus pulposus-like cells in vitro. Global Spine Journal, 2(1_suppl), s-0032.
    • Deuse, T., Seifert, M., Phillips, N., Fire, A., Tyan, D., Kay, M., … & Volk, H. D. (2011). Immunobiology of naive and genetically modified HLA-class-I-knockdown human embryonic stem cells. J Cell Sci, 124(17), 3029-3037.
    • Deuse, T., Hua, X., Wang, D., Maegdefessel, L., Heeren, J., Scheja, L., … Schrepfer, S. (2014). Dichloroacetate prevents restenosis in preclinical animal models of vessel injury. Nature, 509(7502), 641–644. http://doi.org/10.1038/nature13232.
    • Wang, J., Xie, G., Singh, M., Ghanbarian, A. T., Raskó, T., Szvetnik, A., … & Schumann, G. G. (2014). Primate-specific endogenous retrovirus-driven transcription defines naive-like stem cells. Nature, 516(7531), 405.
    • Wang, T., Choi, E., Monaco, M. C. G., Campanac, E., Medynets, M., Do, T., … Nath, A. (2013). Derivation of Neural Stem Cells from Human Adult Peripheral CD34+ Cells for an Autologous Model of Neuroinflammation. PLoS ONE, 8(11), e81720. http://doi.org/10.1371/journal.pone.0081720.
    • Zamule, S. M., Coslo, D. M., Chen, F., & Omiecinski, C. J. (2011). Differentiation of Human Embryonic Stem Cells along a Hepatic Lineage. Chemico-Biological Interactions, 190(1), 62–72. http://doi.org/10.1016/j.cbi.2011.01.009
    • Sun, N., & Zhao, H. (2014). Seamless correction of the sickle cell disease mutation of the HBB gene in human induced pluripotent stem cells using TALENs. Biotechnology and bioengineering, 111(5), 1048-1053.
    • Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., … Mitalipov, S. (2013). Human Embryonic Stem Cells Derived by Somatic Cell Nuclear Transfer. Cell, 153(6), 1228–1238. http://doi.org/10.1016/j.cell.2013.05.006.

MTA Agreement

Material Transfer Agreement

IMPORTANT! PLEASE READ CAREFULLY BEFORE SUBMITTING AN ORDER. THIS IS A CONTRACT.

This Material Transfer Agreement (“MTA”) is between you (“Purchaser”) and the Applied StemCell, Inc. a California company, having its principal place of business at 521 Cottonwood Drive Suite 111, Milpitas, CA 95035 USA (“ASC”). Purchaser must have an approved, current ASC account to place an order. This MTA is effective for a period of five (5) years as of the last date of execution by the parties and governs the purchase and use of all ASC Materials under the terms and conditions set forth below.

TERMS AND CONDITIONS

Definitions

“ASC Material(s)” means materials acquired from ASC as documented on an ASC Sales Order, such as iPS Cell lines.

"ASC Sales Order" means an order submitted for ASC Materials in a form and format as determined by ASC from time to time. "Biological Material(s)" means ASC Materials, Progeny, Unmodified Derivatives and Modifications, either individually or jointly. "Commercial Use" means the sale, license, lease, export, transfer or other distribution of the Biological Materials to a person or entity not party to this MTA for financial gain or other commercial purposes and/or the use of the Biological Material: (a) to provide a service to a person or entity not party to this MTA for financial gain; (b) to produce or manufacture products for general sale or products for use in the manufacture of products ultimately intended for general sale (c) in connection with ADME (Absorption, Distribution, Metabolism and Excretion) testing; (d) in connection with drug potency or toxicity testing (e) in connection with proficiency testing service(s), including but not limited to, providing the service of determining laboratory performance by means of comparing and evaluating calibrations or tests on the same or similar items or materials in accordance with predetermined conditions; or (f) for research conducted under an agreement wherein a for-profit entity receives a right whether actual or contingent to the results of the research. Commercial Use specifically does not include Industry Sponsored Academic Research.

“Contributor(s)” means an organization(s) and/or individual(s) providing original material to ASC for deposit.

"Industry Sponsored Academic Research" means research sponsored by a for-profit organization carried out at a non-profit organization and by the non-profit organization’s employees. "Investigator" means the Purchaser’s principal scientist or researcher using the Biological Material(s). "Modification(s)" mean substances created by Purchaser which contain and/or incorporate a significant or substantial portion of ASC Material. "Progeny" means an unmodified descendant from the ASC Materials, such as virus from virus, cell from cell, or organism from organism. "Purchaser(s)" means the organization purchasing and receiving ASC Material pursuant to this MTA. "Unmodified Derivative(s)" mean substances created by Purchaser that constitute an unmodified functional sub-unit or product not changed in form or character and expressed by the ASC Material provided by ASC. Unmodified Derivatives include, but are not limited to, subclones of unmodified cell lines, purified or fractionated subsets of materials provided by ASC, proteins expressed by DNA/RNA supplied by ASC, or monoclonal antibodies secreted by a hybridoma cell line.

Scope of Use

Subject to the terms of this MTA, Purchaser’s Investigator may make and use the Biological Materials provided to Purchaser by ASC for research purposes only in Purchaser’s Investigator’s laboratory only. The Biological Materials are not intended for use in humans. Purchaser agrees that Biological Materials designated as biosafety level 2 or 3 constitute known pathogens and that other Biological Materials not so designated may be pathogenic under certain conditions. Purchaser assumes all risk and responsibility in connection with the receipt, handling, storage, disposal, transfer and Purchaser’s use of the Biological Materials including without limitation taking all appropriate safety and handling precautions to minimize health or environmental risk. Purchaser agrees that any activity undertaken with the Biological Materials will be conducted in compliance with all applicable guidelines, laws and regulations, and that Purchaser will obtain all permits, licenses or other approvals required by any governmental authority in connection with purchaser’s receipt, handling, storage, disposal, transfer and use of the Biological Materials.

Purchaser shall not distribute, sell, lend or otherwise transfer to a person or entity not party to this MTA the Biological Material, as defined above, for any reason, without ASC’s prior written agreement.

Any Commercial Use of the Biological Material is strictly prohibited without ASC’s prior written consent. Purchaser acknowledges and agrees that Purchaser’s use of certain Biological Material may require a license from a person or entity not party to this MTA, or be subject to restrictions that may be imposed by a person or entity not party to this MTA (“Third Party Terms”). To the extent of ASC’s knowledge of the existence of any such applicable rights or restrictions, ASC will take reasonable steps to identify the same, either in ASC’s catalog of ASC Materials and/or through ASC’s customer service representatives, and to the extent they are in the possession of ASC, ASC shall make information regarding such Third Party Terms reasonably available for review by Purchaser upon request. Purchaser expressly acknowledges that if there is a conflict between this MTA and the Third Party Terms, the Third Party Terms shall govern. Use of the Biological Materials may be subject to the intellectual property rights of a person or entity not party to this MTA, the existence of which rights may or may not be identified in the ASC catalog or website, and ASC makes no representation or warranty regarding the existence or the validity of such rights. Purchaser shall have the sole responsibility for obtaining any intellectual property licenses necessitated by its possession and use of the Biological Materials.

The use permitted under this MTA for Industry Sponsored Academic Research extends only to the academic research carried out at the non-profit organization and the non-profit organization’s employees. Any non-profit Purchaser using the Biological Materials in connection with Industry Sponsored Academic Research agrees to notify the industrial sponsor that any use of the Biological Materials by the industry sponsor will require a separate license from ASC and/or its Contributors and that ASC and/or its Contributors are under no obligation hereunder to license any Biological Materials to any such industry sponsor.

Warranty; Warranty Disclaimer

ASC warrants that (a) cells and microorganisms included in the ASC Material shall be viable upon initiation of culture for a period of thirty (30) days after shipment thereof from ASC and (b) any ASC Material other than cells and microorganisms shall meet the specifications on the applicable ASC Material product information sheet, certificate of analysis, and/or catalog description until the expiration date on the applicable ASC Material’s product label (such thirty (30) day period, or period until the expiration date, referred to herein as the “Warranty Period”). Purchaser’s exclusive remedy, and ASC’s sole liability, for breach of the warranties set forth in this paragraph is for ASC to, at ASC’s sole option, either (i) refund the fee paid to ASC for such ASC Material (exclusive of shipping and handling charges), or (ii) replace the ASC Material. The warranties set forth in this paragraph apply only if Purchaser handles and stores the ASC Material as described in the applicable ASC Material product information sheet. To obtain the exclusive remedy, Purchaser must report the lack of viability or non-conformation to specifications to ASC’s Technical Service Department within the applicable Warranty Period. Any expiration date specified on the ASC Material shipment documentation states the expected remaining useful life, but does not constitute a warranty or extend any applicable Warranty Period. Except as expressly provided above, the ASC Material and any technical information and assistance provided by ASC are provided as-is, without warranties of any kind, express or implied, including but not limited to any implied warranties of merchantability, fitness for a particular purpose, typicality, safety, accuracy and/or non-infringement.

Purchaser acknowledges that the ASC Material and any technical information and assistance provided by ASC are developed and provided exclusively for research purposes, and Purchaser agrees to use the same at its sole risk. Purchaser agrees that ASC and its Contributors will not be liable for any loss, claim or demand made by Purchaser, or made against Purchaser by any other party, due to or arising from the use of the ASC Material by Purchaser, except to the extent permitted by law when caused by the gross negligence or willful misconduct of ASC.

Limitation of Liability

In no event shall ASC or its Contributors be liable for any use of the Biological Material by Purchaser, for any loss, claim, damage, or liability, of whatever kind or nature, which may arise from or in connection with this MTA or the use, handling, storage, or disposal of the Biological Material. ASC’s liability to Purchaser for any claim related to or arising from this MTA or the Biological Material, whether in contract, warranty, tort, or otherwise, shall be limited to the amount paid by Purchaser for the Biological Material. In no event shall ASC be liable for any indirect, special, incidental, consequential, or punitive damages, including without limitation, loss of profits or loss of use, even if ASC has been advised of the possibility of such damages. The limitations of liability set forth in this MTA shall survive termination or expiration of this MTA for any reason.